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Abstract

Magnetic Resonance Imaging (MRI) is an important medical imaging technique
to obtain the anatomy and the physiological processes of the body. MRI exam-
ination usually takes a long time, which increases patients stress and diagnostic
cost. Decreasing sampling number in Fourier domain could efficiently reduce the
acquisition time, hence accelerate the examination process. As the reconstruction
process violates Nyquist-Shannon sampling theorem, how to reconstruct high qual-
ity image from the subsampled Fourier domain is a difficult problem. The rapid
development of deep learning techniques shows the potential to solve this problem.
However, researchers found the deep learning techniques have a robustness issue:
hardly perceptible perturbation in input data could lead to serious artifacts or en-
hanced noise, which causes the diagnosis untruthful. A novel adversarial training
strategy was used in this projects to improve the stability of the reconstruction
model. The result shows this training strategy successfully minimized the effect of
perturbations.

1 Introduction

Magnetic Resonance Imaging (MRI) is widely used in radiology to form anatomy pictures of organ
and tissue. The advantage of MRI is the lack of ionizing radiation and superiority in detecting
soft tissues [1]. However, MRI examination may take more than 30 minutes, which increases the
diagnostic cost and patients stress [2]. Thus, accelerating MRI is widely investigated by many
researchers to minimize the drawbacks. MRI is an indirect process, during which the images are
generated from frequency and phase measurements by using Fourier transform. Lowering the number
of samples acquired in Fourier-space (i.e., k-space) could improve the MRI efficiency, but make the
reconstruction a challenging problem.

The reconstruction problem is a finite-dimensional, underdetermined inverse problem [3]:
Recover image x 2 CN from noisy measurements y = Ax+ e, (1)

where x 2 CN is the image to recover, y 2 Cm denotes the vector of measurements (k-space), and
A 2 Cm⇥N is the sampling operator (i.e., subsampled discrete Fourier transform). Also m ⌧ N in
the underdetermined setting.

The classical method for solving image reconstruction problem in pre 2000’s is directly applying
inverse Fourier transform F�1 on the zero padding k-space measurements ỹ [3][4]:

x̂ = F�1ỹ (2)
The classical method is efficient, but it cannot achieve high quality reconstruction from the subsampled
data.

In 2006, Candès et al. [5] and Donoho et al. [6] proposed a revolutionary technique, Compressive
sensing (CS), which could reconstruct signal from subsampled data based on its sparsity. From the
theory of CS, the sparsity of signal under certain sparsifying transforms like wavelet or discrete
gradient transform could be used for solving sparse regularization problems, such as a quadratically-
constrained basis pursuit problem:

x̂ 2 argmin

x2CN

kHxk1 s.t. kAx� yk2  ⌘, (3)
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where x 2 CN is an image, H is the sparsifying transform, y = Ax is the underdetermined inverse
problem and ⌘ is a fitting parameter. Many robust and efficient optimization methods such as fast
iterative shrinkage-thresholding algorithm (FISTA) [7] and alternating direction method of multipliers
(ADMM) [8] show good performance in solving problem (3).

Deep Learning in Image Reconstruction Deep learning (DL), a class of machine learning al-
gorithms, is the state-of-the-art technique on solving various imaging tasks such as classification,
segmentation, deconvolution,denoising and so on [9]. It could progressively extract high-level feature
from the input image. The rapid development of deep learning in recent years showed the the potential
to change the field of image reconstruction. Although CS is a mature technique in MRI reconstruction,
Gottschling et al. [3] still demonstrated that deep learning could outperform CS is following aspects:
implicitly encoding of complex image structures of DL never requires fixed image model as in CS;
direct learning of reconstruction procedure in DL is not ‘handcrafted’ like CS; DL doesn’t need the
delicate tuning of parameters in the optimization algorithm.

Deep neural network architecture based on convolutional neural network (CNN) has been widely
used in reconstructing MRI from subsampled k-space data [10][11][12][13]. U-Net architecture
proposed by Ronneberger et al. [14] was the foundation of many deep learning methods for MRI
reconstruction. It will be used as baseline model for image reconstruction in this project.

Instabilities in Deep Learning DL techniques are not perfect, as it has a serious robustness
issue. In 2014, Szegedy et al. [15] found that a hardly perceptible perturbation in the input image
could lead to misclassification of neural networks. This finding means generalization of DL to be
difficult. Besides, Antun et al. [3][4] found that deep learning could yield unstable results in image
reconstruction. Stability of deep learning is important, since the false positives and negatives in
reconstruction would make the diagnosis unreliable. In their study, there are three types of instabilities:
1). Tiny worst-case perturbations in the original images could result in serious distortions in the
recovered image. These perturbations comes from image domain (movement of patients and anatomic
difference between people) and sampling domain (malfunctioning of equipment and inevitable noise
from the physical model of scanning machine); 2). Small structural changes in the image could get
removed from the recovered image; 3). Increasing the number of samples in the sampling device may
deteriorates or stagnates the quality of recovered image. In this project, we will focus on the first case.
Recently, Raj et al. [16] proposed an adversarial training strategy of end-to-end deep-learning-based
image reconstruction model to improve robustness. The min-max formulation used our algorithm is
based on this work.

2 Proposed Methods

2.1 Performance Metrics

The performance metrics [2] for the reconstruction results are Normalized Mean Square Error
(NMSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM). The introduction
of SSIM will be presented in section 4 because we also used it as the final training loss function.

NMSE (m̂,m) =

km̂�mk22
kmk22

, (4)

where m̂ is the reconstructed image volume and m is the reference image volume.

PNSR (m̂,m) = 10 log10
[max(m)]

2

MSE (m̂,m)

, (5)

where max(m) is the maximum possible pixel value of the image and MSE (m̂,m) =

1
n

km̂�mk22
is the mean squared error (MSE) between reconstructed image m̂ and reference image m.

2.2 Loss Function

Although MSE Loss is the most common loss function for deep learning training, where
MSE(m̂,m) = ||m̂ � m||22 for two images m̂ and m with pixel-wise comparison, for standard
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UNet training, we found that SSIM [17] can be used as loss function and it usually outperform MSE
Loss from many computer vision literature. Different to MSE, which estimates absolute errors, SSIM
will compute inter-dependencies of pixels by calculating luminance (l), contrast (c) and structure (s).
The formula for SSIM between sliding windows x and y of two images m̂ and m is

SSIM(x, y) = [l(x, y)↵ · c(x, y)� · s(x, y)� ], (6)

where ↵,�, � are weights usually set to 1 and

l(x, y) =
2µ

x

�
y

+ c1
µ2
x

+ µ2
y

+ c1
, c(x, y) =

2�
x

�
y

+ c2
�2
x

+ �2
y

+ c2
, s(x, y) =

�
xy

+ c3
�
x

�
y

+ c3
, (7)

where µ and � are mean and variance and the constant c0s are included to avoid instability with
definition c1 = (k1L)

2, c2 = (k2L)
2 and c3 = c2/2, where L is the dynamic range of the pixel

values (e.g., 255 for 8-bit grayscale images). Then, the SSIM Loss can be defined as Structural
Dissimilarity (DSSIM), where

DSSIM(x, y) =
1� SSIM(x, y)

2

(8)

Our experiment setting has windows size to be standard 11⇥ 11.

2.3 Adversarial Training Strategy

Figure 1: Adversarial training framework.

Algorithm 1 Minibatch training for robust reconstructor with generative perturbation
Input: Mini-batch samples y

T

, G
T�1, fT�1

Output: G
T

and f
T

1: G
T

= G
T�1

2: Generate latent noise z
T

3: G
T

= argmax

G

[�1Loss(f
T�1(F�1P(y

T

) +G(z
T

;�); ✓),F�1
(y

T

)) + �2 max {0, ||G(z
T

;

�)||22 � ✏}]
4: �

T

= G
T

(z
T

)

5: f
T

= argmin

f

[Loss(f(F�1P(y
T

); ✓),F�1
(y

T

))+�1Loss(f(F�1P(y
T

)+�
T

; ✓),F�1
(y

T

))]

6: return G
T

, f
T

Our new training strategy contains an auxiliary network which could generate adversarial examples
during training. When MSE Loss is used, the loss function has the following form:

min

✓

max

�

Loss
�

f(F�1P(y); ✓),F�1
(y)

�

+ Loss
�

f(F�1P(y) +G (z
T

;�) ; ✓),F�1
(y)

�

+ �2 max

n

0, kG (z
T

;�)k22 � ✏
o

,
(9)
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where y, and F are described in previous section, P is the mask operation for full sampled k-space,
z
T

is the latent noise, f is the image reconstruction network, G is the network to generate additive
perturbation, and ✏ is the perturbation radius for G. Besides, Loss can be any loss function to quantify
the quality of two input in image domain (We tried MSE Loss and SSIM Loss in our project), ✓
stands for parameters for reconstructor and � stands for parameters for generator. The first term is
the standard MSE Loss or DSSIM Loss in x-space. The second term represents an adversarial game
between f and G, where G will generate optimal perturbation which maximize the reconstruction
loss while f will make itself robust to the perturbations. The third term is a hinge loss penalty to
discourage large perturbation. Besides, some empirical changes are added into the training algorithm
to build an adversarial robust f . Figure 1 shows the adversarial training framework, which consists
of image reconstruction network f (U-Net) jointly with network G (Transposed Convolution) to
generate additive perturbation.

Algorithms The algorithm with arbitrary loss function then can be written as Algorithm 1. The
algorithm is inspired and modified from [16]. Firstly, we maximize the generator w.r.t ground
truth images with an added regularization term to avoid the case that the perturbation becomes too
large hence maximizing the possible perturbation to produce. Then, we calculate the perturbation
from generator and minimize the loss between output from reconstructor with original image and
ground truth image as well as the loss between output from reconstructor with original image plus
perturbation and ground truth image. In the Algorithm 1, G, f , P , y, z|, Loss, ✓ and � are defined in
last paragraph. In real training case of the algorithm in deep learning framework, the gradients of
generator will be computed by optimizing negative Loss with certain optimizer (e.g. Adam). For
reconstructor, the gradient will be computed by optimizing positive Loss.

2.4 Network Architecture

Reconstructor: U-Net The training network is in an end-to-end manner to minimize the MSE with
respect to the ground truth images [2]:

min

✓

1

2

n

X

i=0

�

�

�

B
✓

⇣

m̃(i)
⌘

�m(i)
�

�

�

2

2
, (10)

where m(i) is the ground truth image, m̃(i)
= C

�

|F�1
(P (y)) |

�

is the zero-filled image, and B
✓

is
the function to be learned by U-Net. Here P is the projection function makes all masked entries to be
zero, F�1 is inverse Fourier transform and C is the linear operator for center cropping.

Figure 2: Reconstructor U-Net architecture [2][14].

Figure 2 [2][14] shows the U-Net architecture used for single-coil knee MRI reconstruction, which
consists of a down-sampling (contracting) path and an up-sampling (expansive) path. The down-
sampling path is based on the typical convolutional neuron network architecture, which could
extracted features from dataset and reduce the number of parameters to be learned by the network.
It consists of blocks of two 3 ⇥ 3 convolutions, each followed by a rectified linear unit (ReLU)
and instance normalization. Each blocks are connected by a 2 ⇥ 2 max pooling operation with
stride 2 to achieve down-sampling, which halve each spatial dimension. After the original image
being down-sampled into latent space, the up-sampling path, which shows similar structure to the
down-sampling path, will be used to obtain a image with same size as input. In each block of
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up-sampling path, there is a concatenation of the up-sampled activation from previous block, and an
activation follows skip connection from the down-sampling path. Each block also consists of blocks
of two 3⇥ 3 convolutions followed by a rectified linear unit (ReLU) and instance normalization. And
blocks are interleaved with 2⇥ Bilinear up-sampling operator, which doubles the resolution of the
result of block. At the final layer, a series of 1 ⇥ 1 convolutions map the 32-components feature
to 1 without changing the spatial resolution of original image. As some small adjustments from
original U-Net to make more stable training, we increased number of channels, pool layers to 64 and
5 respectively, PReLU [18] is used as activation function rather than ReLU and average pooling is
used rather than max pooling.

Generator: Transposed Convolution Transposed Convolution first proposed by Zeiler, et al. [19]
is used as our generator architecture with regularization layers. The architecture is also used by
Radford et al. [20] to achieve the deep convolutional generative adversarial networks (DCGAN) in
minimax application. It could map the latent space z

T

to the image space, which means noise G(z)
with the same shape as the input image of U-Net will be generated. In our project, G(z) has shape
(n

c

⇥ 320⇥ 320) = (1⇥ 320⇥ 320), where number of channels of the input image n
c

is set to be 1
as grayscale images are used.

Figure 3 shows the Transposed Convolution example from DCGAN for adversarial attack, which
consists of a sequence of fractionally-strided convolutions, each followed with a 2D batch norm layer
and a PReLU activation. Last layer is paired with a tanh function to achieve a data range of [�1, 1] to
match our normalized pixel values. In our projects, 6 fractionally-strided convolutions were used to
convert the latent space into a 320⇥ 320 pixel image.

Figure 3: Generator DCGAN architecture [20].

3 Experiments

3.1 Datasets

We conduct our experiments on single-coil FastMRI dataset [2], which is stored as H5 with full
sampled k-space. A mask (either random or equispaced) is applied to the original k-space to produce
under-sampled k-space of our training sample x. The image domain is obtained by applying inverse
Fourier transform on both under-sampled k-space and full sampled k-space. For training set, the
dataset has 973 volumes with corresponding 34742 slices. For validation set, the dataset has 199
volumes with corresponding 7135 slices.

The H5 files in both training and validation set contain tensors kspace, reconstruction_rss
and reconstruction_esc. kspace is the emulated single-coil k-space data, which has the tensor
shape (number of slices, height, width). For example, shape can be (38, 640, 368). The exact tensor
shapes are different among files. reconstruction_rss and reconstruction_esc are two ground
truth reconstructions for the single-coil datasets. reconstruction_rss is the root-sum-of-squares
computed from multi-coil data, and reconstruction_esc is computed by the inverse Fourier
transform on the single-coil data. All ground truth images are cropped to the central 320⇥ 320 pixel
region.
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3.2 Training Details

All networks were trained on two Nvidia Tesla V100 GPU. We used PyTorch for training and
implementation of all models. Our generator has 7 Transposed convolution layers to upsample the
latent noise from size 100 to worst-case noise in image domain with shape 320⇥ 320. Learning Rate
of both models were set to 1⇥ 10

�4 with AdamW optimizer [21][22] for reducing over-fitting with
weight decay rate 0.01. Batch size of all training is set to be 8. From our attempts of getting stable
results, the hyperparameters are set as followings: ↵1 for weighting perturbation reconstruction loss
is set as 1, ↵2 for weighting hinge loss impact is set as �1 and ✏ for regularizing numerical value of
perturbation squared norm in hinge loss is set as 1⇥ 10

3 or 5⇥ 10

3. Early stopping is applied when
validation loss is not decreasing for 3 consecutive epochs. As the training is very time consuming
(close to 2 hrs for one epoch for minimax training) and we observed that the algorithm converges fast
with few epochs, we set maximum epoch to be 5. This leads to roughly 10 hrs of training for each
attempt. Figure 4 shows the loss of generator and reconstructor vs. iterations and loss of reconstructor
vs. iteration alone during adversarial training from the case ✏ = 1 ⇥ 10

3. Since the hinge loss
regularization is applied, the generator loss (red) starts large and the loss change in figure (a) is hard
to see. However, from numerical value observation of our experiment, we see that the reconstructor
loss decreases and converge to equilibrium with generator loss after several iterations.

(a) Loss of reconstructor (blue) and generator
(red) vs. iterations

(b) Loss of reconstructor vs. iterations

Figure 4: Loss changes on reconstructor and generator

4 Results and Discussion

Source code of adversarial training and supporting information are submitted with the report.

Performance Summary Table 1 summarizes the reconstruction performance without or with
adversarial training. Results are obtained by applying U-Net model on single-coil training and
validation data. Different perturbation radiuses ✏ are used here. These results show our training could
give reasonable reconstruction quality from subsampled data.

Perturbation Radius ✏ Process & Methods NMSE PNSR SSIM
Training-S 0.21083 25.64586 0.64354

Validation-S 0.23234 25.35955 0.62848

1⇥10

3 Training-A 0.19351 25.87200 0.63597
Validation-A 0.21883 25.19485 0.60633

5⇥10

3 Training-A 0.22061 25.10864 0.61624
Validation-A 0.23862 24.87306 0.60115

Table 1: Reconstruction performance on single-coil knee MRI datasets. Training-S and Validation-S
represent the training and validation performance of standard U-Net without adversarial training.
Training-A and Validation-A represent the training and validation performance of standard U-Net
with adversarial training.
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Visualization of Input Data Figure 5 (a) and (c) show the absolute value of full-sampled and
subsampled k-space data, respectively. The acceleration rate is four, which requires other columns
in k-space are selected randomly with probability P = (

N

4 �N ⇤ 8%)/(N �N ⇤ 8%), where N
is the number of columns in k-space. This is to ensure the expected number of columns in k-space
is equivalent to N/4. Figure 5 (b) and (d) represent the inverse Fourier transform of (a) and (c),
respectively. The low quality image (d) will be cropped into a 320⇥ 320 image and used as the input
of U-Net.

Figure 5: Visualization of k-space and input image. (a) Absolute value of full-sampled k-space
data (b) Inverse Fourier transform of (a). (c) Absolute value of subsampled k-space data (d) Inverse
Fourier transform of (c).

Figure 6: Results visualization. Top row represent results with perturbation radius ✏ = 1 ⇥ 10

3,
while bottom row represent results with perturbation radius ✏ = 5 ⇥ 10

3: (a)(e) Reconstruction
from standard input by using U-Net with adversarial training. (b)(f) Visualization of perturbations.
(c)(g).Ground-truth image with perturbations. (d)(h) Reconstruction from input with perturbations by
using U-Net with adversarial training. (e)(i) Reconstruction from input with perturbations by using
U-Net without adversarial training. Red circles represent the noise in the reconstruction image.

Stability with Respect to Perturbations We perturbed the zero filled image (described in section
2.4) m̃(i)

= C
�

|F�1
(P (y)) |

�

with perturbations generated from Transposed Convolution. Figure
6 is used for illustrated how the worst case perturbation could affect reconstruction results and
how adversarial training can help minimize the noise. Figure 6 (b) and (f) are the worst case
perturbations generated from the adversarial training with perturbation radius ✏ = 1 ⇥ 10

3 and
✏ = 5 ⇥ 10

3, respectively. Both perturbations consist of some big white circles and many small
noises that are less visible than the white ones. The perturbations represented here are not as tiny as
described in Antun et al.’s work [4]. In order to achieve tiny (imperceptible) perturbations, smaller
perturbation radius ✏ is needed. Since the training process is expensive, we pick larger ✏ to give
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better demonstration of robustness issue in limited time. Figure 6 (a) and (e) are the ground-truth
images with perturbations. Perturbations are visible in (a) and (e) since ✏ is large. Figure 6 (d) and
(h) represents the reconstruction from the subsampled data with perturbations by using U-Net with
adversarial training, while Figure 6 (e) and (i) represents the reconstruction from the subsampled
data by using U-Net with adversarial training. We could clearly see that the reconstruction images
from the subsampled data by using U-Net without adversarial training still have white circles from
the perturbations. Taking a comparison with closer look between (c)(g) and (e)(i), it can be observed
that the baseline model even enhanced the added perturbation rather than trying to remove them.
However, as shown in Figure 6 (d) and (h), there are no visible noises in the reconstruction. This
means the reconstructor after adversarial training is robust to the worst-case perturbation. It should
be noticed that neither our experiment nor the method proposed by Antun et.al.[3][4] can perfectly
simulate the perturbation in real world for patient movement or equipment malfunctioning since both
methods find perturbation by gradient ascent based on the reconstructor neural networks. However,
our experiment shows that adversarial training can be an effective way of mitigating the instability
problem under the assumption that the distribution of perturbation is simulated. If there is enough
data of perturbation generated from real world to simulate the true distribution, it could be possible
that adversarial training could mitigate the instability problem to get wide adaptation on medical
industry.

Novelty Involved Even though there had been many discussions about the possibility of solving
instability with minimax optimization in the medical image processing community, there were no
many attempts on actual experiment. We only found one recent paper [23] referred to use adversarial
attack on improving MRI reconstruction robustness with a different proposed method. The successful
experimental result of this kind of problem would be much more difficult to achieve than theoretical
derivation because of various problem may emerge from minimax optimization such as mode collapse
and non-convergence. Although the formulation we used is not completely novel, the original paper
[16] that proposed this method didn’t attempt their solution on MRI data and we made several
adjustments to make it work on actual experimental training.

5 Future Works

In our current project, the worst-case perturbation is learned and added to image domain. However,
another way to create the perturbation is that the perturbation can be learned from k-space and
added to the sampled k-space directly. We considered to come up with an experiment on that,
but time limit constrained our further investigation by now. For creating perturbation on k-space,
since k-space has complex number with both real part and imaginary part, one way of creating the
worst-case perturbation generator with CNN would be having two kernels to generate result with two
channels, whereby one channel represents real part and another represents imaginary part. In this
case, the worst-case perturbation can be learned by gradient ascent by loss function ||f(F�1

(P(y
T

)+

G(y
T

; ✓)))� f(F�1P(y
T

); ✓)||22 � �2||G(y
T

;�)||22, where the definition of notations are the same
as our previous experiment. As k-space perturbation is obtained, the perturbation need to be added to
original sub-sampled k-space with algorithm modified to be.

Algorithm 2 Minibatch training for robust reconstructor with generative perturbation
Input: Mini-batch samples y

T

, G
T�1, fT�1

Output: G
T

and f
T

1: G
T

= G
T�1

2: G
T

= argmax
G

�1||fT�1(F�1
(P(y

T

)+G(y
T

;�)); ✓)�F�1
(y

T

)||22+�2 max {0, ||G(y
T

;�)||22
�✏}

3: �
T

= G
T

(y
T

)

4: f
T

= argmin
f

||f(F�1P(y
T

); ✓)� F�1
(y

T

)||22 + �1||f(F�1
(P(y

T

) + �
T

); ✓)� F�1
(y

T

)||22
5: return G

T

, f
T

Moreover, as we observed that the single-coil images from this dataset has varying quality and some
of them have very poor image quality, some more preprocessing such as removing low quality during
training can further improve the performance.
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