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ABSTRACT

The 72,000 lead tungstate crystals in CMS experiment at the CERN Large Hadron Collider are used
to measure the energy of electrons and photons produced in the proton-proton collisions. The optical
transparency of the crystals degrades slowly with radiation dose due to the beam-beam collisions.
The transparency of each crystal is monitored with a laser monitoring system that tracks changes
in the optical properties of the crystals due to radiation from the collision products. Predicting the
optical transparency of the crystals, both in the short term and in the long term, is a critical question
for the CMS experiment. We describe here the public data release, following FAIR principles [1], of
the crystal monitoring data collected by the CMS Collaboration between 2016 and 2018. Besides
describing the dataset and its access, the problems that can be addressed with it are described, as well
as an example solution based on a Long Short Term Memory neural network developed to predict
future behaviour of the crystals.
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1 Introduction

The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) is designed to detect
and measure particles produced in the proton-proton collisions at the LHC [2]. One of the components of the CMS
detector is an electromagnetic calorimeter (ECAL) made of lead tungstate crystals that is used to measure the energy of
electrons and photons produced in the collisions. This was the principle detector used to detect the Higgs boson in the
two-photon decay channel in the discovery of the Higgs boson in 2012 [3], in the precision measurement of the Higgs
boson mass [4], and in many other measurements made by the CMS Collaboration. Changes in the crystal transparency
caused by radiation from the collisions in the LHC lead to an instability on the electron and photon response of the
crystals that needs to be tracked and corrected for. Predicting these changes both in the short term and in the long term
is a critical question for the CMS experiment. We describe here the public release following FAIR principles [5] of the
crystal monitoring data collected by CMS between 2016 and 2018. Besides describing the dataset and its access, and
the problem to be addressed with it, we provide links to an example solution based on a Long Short-Term Memory
neural network, developed to predict future behaviour of the crystals.

1.1 Electromagnetic Calorimeter (ECAL)

There are 75,848 individual lead tungstate crystals in the ECAL, of these 62,000 are arranged in a barrel surrounding
the interaction point where the beams collide, and the barrel is capped by two endcap calorimeters, each consisting of
7,324 crystals [6]. The crystals in CMS measure approximately 22 cm in length with a 2× 2 cm2 section and weigh
≈ 1.1 kg. Lead tungstate crystals are optically transparent and emit a short pulse of light when they absorb ionizing
radiation. Due to the intense radiation while the LHC is in operation, the optical transparency of the crystals degrades
over time. This degradation is due to the creation by the radiation of atomic-level impurities in the crystal that act as
color centers [7] that absorb light propagating through the crystal. Deep well impurities are stable and persist for years,
and the radiation damage is permanent, and shallow impurities are metastable and are short-lived. During beam-beam



collisions the optical transmission is reduced and partially recovers as the meta-stable states decay during periods when
there is no radiation.

When the LHC is operating the beam-beam collisions are continuous, with a ’fill’ generally lasting for approximately 18
hours, with a four to six hour interval between fills. There are longer intervals when there are no beams for maintenance
of the machine and the detectors, which last on the order of a day, and every year there are several-month-long shut
downs. During operation the light output of the crystals is reduced as the color centers are created, and between periods
of operation the crystals recover as the metastable states decay.

Since detailed knowledge of the crystal’s light output light output due to ionizing radiation is essential for the physics
measurements, the transparency of each crystal is carefully monitored with a laser monitoring system which injects
pulses of light into each crystal at intervals of approximately every 40 minutes. Predicting the optical transparency of
the crystals both in the days and years ahead is a critical question for the CMS experiment. We describe here the public
release following FAIR principles of the crystal monitoring data collected by CMS between 2016 and 2018. Besides
describing the dataset and its access, and the problem to be addressed with it, we provide links to an example solution
based on Long Short-Term Memory neural network, developed to predict future behaviour of the crystals.

The principle of operation of the crystal calorimeter, which is designed to detect electrons and photons with energies
of 1 GeV or more, is as follows: When a high energy photon (> 100MeV) is incident on the crystal electron and
positron pairs are produced, these in turn interact with the atomic nuclei and radiate (bremsstrahlung) photons. These
in turn produce more electron-positron pairs, which in turn radiate photons, though always with less energy. This
sets up a cascade where photons and electrons-positrons pairs are produced that continues until the photons have
insufficient energy to create an electron-positron pair (< 1MeV). During this process the electrons and positrons
produced propagate in the crystal and ionize the atoms causing scintillation light (optical photons) to be produced that
can be detected with a photodetector coupled to the crystal. The operating principle of the CMS ECAL is that the
amount of ionizing radiation is linearly proportional to the energy of the incident electron or photon, and hence the light
output is proportional to the energy of the incident particle.

The cascade is a stochastic process, thus the energy measured with the crystals is measured with a resolution that can be
parameterized as:
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where the first term on the right is the stochastic term, which is the contribution to the resolution from the natural
fluctuations in the cascade; second is the noise term due electronic noise, and third is the constant term that accounts for
energy leakage and other signal losses. The parameters, S, N and C have been measured with a prototype in a dedicated
particle beam. For electrons with pT larger than 10 GeV, the energy resolution is better than 1%.

The radiation incident on the crystals from beam-beam collisions, which reduces their transparency, is not uniform
across the detector, and is approximately proportional to the direct distance, radius, of the crystals from the beams.
Thus the degradation is similar for crystals in the barrel ECAL, while it increases towards the center of the endcaps. A
convenient approximation to the production angle is the pseudorapidity (η) [6], which is equal to zero at the center
of the barrel and increases to ±3.0 at the smallest radius part of the endcaps. This difference in the level of radiation
damage in the crystals due to different radiation levels can be seen in Figure 1.

2 Data Challenge

The details of the color center formation under radiation are poorly understood. It is thought that they are primarily
determined by the atomic-level defects in the crystals when they were first grown and, thus, determined by the individual
history of each crystal. From this it follows that the best way to predict their future behavior can be learnt from prior
response to radiation, or by examining past behavior under radiation of a crystal, one can learn how that crystal will
behave in the future.

The interest of the CMS collaboration is to predict how the ensemble of crystals will respond to future irradiation
cycles with damage and recovery. In particular there is interest in predicting by how much a group of crystals will
have recovered from irradiation after a duration of the order one day. Another point of interest is to predict the
performance of the crystals in the barrel calorimeter – the endcaps will be replaced in 2029 – at the end of operation of
the High-Luminosity LHC in 2040.

In the example given below the short-term problem is tackled. The long term problem is an open challenge.
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Figure 1: Relative response of crystal to laser light in different η regions between the start of operations in 2011 and
2018. The crystals in barrel (|η| < 1.44) all have a relatively small light loss, while the crystals closest to the beam in
endcaps (|η| > 2.7) show a large degradation in transparency.

3 Datasets

The response to the injected laser for every crystal taken is measured approximately every 40 minutes and stored in
a offline database. The data corresponding to the laser response of all 75848 crystals from 2016 through 2018 was
extracted from the database. Each entry has a timestamp corresponding to the time when the measurement was taken
and the current intensity of the beam-beam collisions – the instantaneous luminosity – provided by the CMS beam
radiation, instrumentation, and luminosity (BRIL) group. This is a measure of the radiation level as the crystals.

The dataset consists of the following elements corresponding to each measurement.

• xtal_id: Crystal Identification number within ECAL ranging from [0, 75848].

• start_ts: Start of the Interval of Validity (IOV). An Interval of Validity corresponds to a time during which a
measurement is taken for a single crystal. In other words, each IOV contains one and only one measurement
per crystal.

• stop_ts: End of the Interval of Validity (IOV).

• laser_datetime: Timestamp of the measurement for a given crystal within an IOV. The timestamp lies between
the start of IOV and end of IOV.

• calibration: APD/PD ratio taken at laser_datetime. This value is used to quantify the transparency of the
crystal at the time of measurement.

• time: Time corresponding to the luminosity measurement (obtained from BRIL) closest to the time when the
laser measurement was taken.

• int_deliv_inv_ub: Approximate integrated luminosity delivered up to the measurement in the units of micro
barn inverse.

In order to ensure the FAIR-ness of the publication of the dataset, it has been published [8] on Zenodo1 platform, which
was launched in May 2013 as a part of OpenAIRE project, in partnership with CERN. The dataset consists of 26 files in

1https://zenodo.org/
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tar gzip format, each file consisting of up to 10 csv files. Each csv file contains measurements of up to 360 crystals. The
files corresponding to the +z side of the ECAL are labelled as "plus" and those corresponding to -z side are labelled
"minus". The list of iη rings along with their position in terms of pseudo-rapidity (η) and azimuthal angle (ϕ) in each
tar file are included in form of json files under the metadata section in Zenodo.

4 Machine Learning Solutions

An artificial Neural Networks (NN) is a Machine Learning (ML) algorithm that mimic the biological structure and
functioning of neurons in a brain. A neural network that does not involve any cyclic connections is called as a
Feedforward neural network (FNN). A Deep neural networks (DNN) are the structures that consist of many stages
of inter-connected neurons. Deep Neural Networks are powerful on handling hard learning tasks such as object
identification and speech recognition. However, it requires the task inputs and outputs to be encoded into vectors with
fixed dimensionality [9].

Many problems like machine translation and speech recognition naturally have sequential structure, as their input and
output lengths are not known a-priori [9]. The same architectures have also been implemented to solve time series
prediction problems. A class of neural networks called Recurrent Neural Networks (RNNs), which are a type of FNNs
that pass the data sequentially between different nodes. This architecture allows the network to learn and retain the past
knowledge when processing data points from a given data series. RNNs have some shortcomings—in particular, the
vanishing gradient problem [10] while training the network. Several other architectures have been developed in the past
to address these issues.

4.1 Long Short Term Memory (LSTM) Models

LSTM models are a type of RNNs that include feedback components. RNNs are good at tracking arbitrary long-term
dependencies in a sequence, but have a tendency to be unstable during training. LSTMs solve the vanishing-gradient
problem through an additive gradient structure. The LSTM cell is as shown in Figure 2, which is the key part of the
Seq2Seq model. For each element in the input sequence, each layer of LSTM computes the following functions:

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh
(
Wigxt + big +Whght−1 + bhg

)
ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt
ht = ot ⊙ tanh ct

(2)

where ht, ct are hidden and cell state at time t, xt is the input at time t, it,ft, gt,ot are the input, forget, cell and
output gates, respectively. σ is the sigmoid function and ⊙ is the Hadamard product [11].

4.2 Seq2Seq Model

A Sequence to sequence (Seq2Seq) model is an architecture which combines two or more LSTMs. It consists of two
parts—the encoder and the decoder, each of which is built by using separate LSTMs. This type of model has been
developed for automatic language translation, where a sentence from one language is translated to another language [9].
The encoder is used to process each token in the input sentence, and encode all the input sequence information into a
fixed length vector. The transform vector, known as context vector, is a vector in a latent space and it encapsulate the
whole meaning of the input sequence. The decoder reads the context vector and predicts the target sequence token by
token.

Figure 2 shows the basic architecture of the encoder-decoder network used for this problem. The encoder block consists
of LSTM units connected in series which takes in a set of calibration values and the luminosity differences between
those calibration values as an input. All the information of input sequence is encapsulated into internal states ht (hidden
state) and ct (cell state). The decoder block is another block of LSTM units connected in series. The final states (ht, ct)
of the encoder are used as the initial states (h0, c0) to the decoder, which is the context vector used to predict the target
sequence. The decoder network also takes inputs along with the initial states to predict the target sequence. The input to
the decoder varies according to the method used for training.

The Seq2Seq model can be trained using teacher forcing method, where the decoder is trained using the target output
(ground truth output) instead of the output generated by the decoder in the previous step of the sequence. However,
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during the evaluation step, the decoder generates the output sequentially using the outputs generated in the previous
step. Using teacher forcing during the training has shown to improve the training process.

Figure 2: Seq2Seq model for used for predicting future calibration values (lower left). The Encoder block (upper left)
and Decoder block (lower right) are a set of sequentially connected LSTM units (upper right).

5 Training

For training AI models, PyTorch packages were used. The code is maintained in a public Github repository (https://
github.com/FAIR-UMN/FAIR-UMN-ECAL). Conda environments are provided so that the users of the datasets can use
any API of their liking. The project details can also be found in https://fair-umn.github.io/FAIR-UMN-Docs.

5.1 Data Pre-Processing

The difference between subsequent entries in the dataset is the integrated luminosity delivered between the two
consecutive measurements. Before training the networks, the measured calibration values and the luminosity differences
in the training dataset are normalized to unity using the StandardScaler from the sklearn library. Next, to obtain input
X and true output Ytrue used for model training, we performed the following steps:

• Define input length LE (e.g., LE = 24), corresponding to the number of LSTM units in the encoder, and
the output length LD (e.g., LD = 24), corresponding to the number of LSTM units in the decoder for each
individual sample. The Seq2Seq model will be trained to use a sequence of calibration values and luminosity
differences of length LE and learn to predict the next LD calibration values.

• In order to avoid any overlap between the prediction sequences, a separation stride LS is set to be the same as
LD. Hence, the total number of samples is

Nsample =
N − LE − LD

LS

+ 1,

where N is the total number of entries in the training dataset. For each individual sample, the input is a sequence
starting from T to T + LE − 1 and the output is a sequence starting from T + LE to T + LE + LD − 1.

• In PyTorch, the LSTM module takes a 3D tensor as the input whose dimensions are given by (sequence, batch,
features). In this problem, the input to encoder (Xencoder), the input to decoder (Xdecoder) and the output of the
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decoder (Ydecoder) can be represented as below:

Xencoder ∈ RLE×Nsample×NE ,

Xdecoder ∈ RLD×Nsample×ND ,

Ydecoder ∈ RLD×Nsample×1,

where NE and ND are the number of features used in encoder and decoder respectively. In this study, NE

and ND are set to be 2, which represents features calibration value and luminosity difference. But the more
features such as the difference in the timestamps between two entries can be added if needed.

5.2 Training Seq2Seq Model

The Seq2Seq model was built using the PyTorch library. Both encoder and decoder blocks were setup with 1024 hidden
layers. The number of LSTM cells in the encoder and the decoder were varied to scan for the optimal input and output
lengths. The LSTMs were initialized with a sigmoid activation for input, forget and output gates and a hyper-tangent
activation for the cell gates. The Mean Squared Error (MSE) loss function along with the Adam [12] optimizer are used
to train the model. The model is trained for 200 epochs with a batch size of 128 and a learning rate of 10−3. A higher
number of epochs (3000) were used to check if the model performance improves, but it was found to converge after
about 200 epochs. All trainings and predictions were performed on machine with Intel Xeon Silver 4214R@2.40GHz,
and Nvidia RTX A6000 graphics card with 48 GB memory.

With a large amount of data points, there are several options available for training a model. A single model can be
developed for each of the individual crystals. On the other hand, the data points of different crystals that are at equal
distances from the center of ECAL , i.e., within one iη-ring of the ECAL, can be combined together. The assumption is
that these crystals receive an equal amount of radiation dose because of the radial symmetry and hence will have similar
behavior in laser response over a course of time. Then this model trained with a larger data points would be able to
predict calibrations for all the crystals in the corresponding iη-ring. In addition to changing the number of crystals,
three different strategies were used which are given as follows:

1. Recursive: In this setting, as shown in Figure 3 (left), we feed the token from Ypred from the previous time step
as the input to the current time step.

2. Teacher Forcing: In this setting, as shown in Figure 3 (right), we feed the token from Ytrue (instead of the token
from Ypred) from the previous time-step as the input to the current time step.

3. Mixed: In this setting, the previous two strategies can be combined in different ratios. For example, a mixed
training with a teacher forcing ratio of 0.7 means only 70% of batches in the decoder training uses teacher
forcing strategy.

Figure 3: (left): Seq2Seq model with recursive training; (right): Se2Seq model with teacher forcing.

6 Results

To quantify the performance of the LSTM or Seq2Seq model, we use Mean Absolute Percentage Error (MAPE) as the
metric, which is defined as

MAPE =
100%

n

n∑
t−1

∣∣∣∣At − Ft

At

∣∣∣∣, (3)
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where At is the actual value and Ft is the forecast value.

To determine an appropriate input length (LE) and output length (LD) for the Seq2Seq model, the models were trained
using different sequence lengths with the recursive training strategy. We set LE = LD in this example. As shown
in Figure 6, sequence length equals 24 gives the lowest MAPE. Hence, this value will be used for all the trainings
described in this section.

Figure 4: Seq2Seq model trained with different sequence lengths.

6.1 Different Training Strategies

For the purpose of this study, the data taken in the year 2016 corresponding to single crystal with ID 54000, from
iη-ring 66, were used to train a Seq2Seq model (Model-S). Another model (Model-R) was trained using the data taken
in the year 2016 corresponding to all 360 crystals in iη-ring 66, with ID ranging from 54000 to 54359. The response of
the two models was evaluated on different crystal from the same iη-ring 66 using the data taken in the year of 2017 and
2018.

For making these predictions, two cases were used:

1. Case 1: The ground truth is provided as the model input at each prediction window (Figure 5 (left)).

2. Case 2: In this case only the first input is provided and the model would recursively “reuses" the predictions
from its previous prediction window as its input (Figure 5 (right)). to make predictions and then evaluate their
performance separately. Therefore, in terms of learning, this case is more challenging than Case 1 as we use
less prior information.

Figure 5: (left): Case 1: without using prediction as the input of the next round prediction; (right): Case 2: using
prediction as the input of the next round prediction

The input to each LSTM cell in the decoder contains the luminosity delivered (∆Li) between the current and the next
timestamp, and the previous calibration value. Typically, during training, the output from the previous LSTM cell in the
decoder is used as an input to the next LSTM as a current calibration value, along with the ∆Li. However, in case of
teacher forcing, true calibration value for input is used instead of the output from the previous LSTM cell. Teacher
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forcing ratio can be used to define the fraction of batches in the decoder training which would get true calibration values
as input during training.

Figure 6: A demonstration of the true calibration curve vs the predicted calibration curve. (top left) Case 1 predictions
using Model-S (mixed; teacher forcing ratio = 0.5): the response of the crystal ID 54300 in 2017. (top right) Case 1
predictions using Model-R (mixed; teacher forcing ratio = 0.5): the response of the crystal ID 54300 in 2017. (bottom
left) Case 2 predictions using Model-S (mixed; teacher forcing ratio = 0.5): the response of the crystal ID 54300 in
2017. (top right) Case 2 predictions using Model-R (mixed; teacher forcing ratio = 0.5): the response of the crystal ID
54300 in 2017.

The demonstration of our predicted calibration curve is shown in Figure 6: Both Model-S and Model-R in Case 1 can
successfully predict the calibration in future time steps with low MAPE. However, both Model-S and Model-R in Case
2 give worse predictions after certain time steps.

Year Prediction Model-S(M) Model-R(R) Model-R(M) Model-R(T)
2016 Case 1 0.194 0.168 0.180 0.191
2017 Case 1 0.223 0.228 0.234 0.263
2018 Case 1 0.291 0.323 0.330 0.391
2016 Case 2 0.888 0.516 0.577 0.530
2017 Case 2 0.836 0.680 0.713 0.673
2018 Case 2 1.24 1.216 1.147 1.327

Table 1: Average MAPE from prediction on all 360 crystals. M: mixed strategy of teacher forcing and recursive (teacher
forcing ratio= 0.5); R: recursive strategy; T: teacher-forcing strategy.

Furthermore, the MAPE has been evaluated for all the 360 crystals (crystal ID:34000-34359) using all three years
(2016, 2017 and 2018) of data and the distribution is shown in Figure 7. Also, the corresponding average MAPE
among all predictions is shown in Table 1. As shown in both Figure 7 and Table 1 Model-R with recursive, mixed, and
teacher forcing strategy have different behavior: the recursive version leads to lower MAPE than the teacher forcing
version, which indicates a potential overfitting when using the teacher forcing strategy. Also, in Case 1 prediction,
mixed strategy has MAPE between recursive and teacher-forcing; while in Case 2, mixed strategy get worse prediction
on 2016 and 2017 data, but get better prediction on 2018 data.
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Figure 7: MAPE histograms from prediction on year 2016, 2017 and 2018. (a)(b)(c)(d) use Case 1 prediction strategy,
while (e)(f)(g)(h) use Case 2 prediction strategy. (a) and (e) use model trained on single crystal 54000 of 2016.
(b)(c)(d)(f)(g)(h) use model trained on all crystals in ring 66 (crystal ID: 54000-54359) of 2016. (b)(f) use recursive
strategy in the encoder; (c)(g) use mixed strategy (teacher forcing ratio = 0.5) in the encoder; (d)(h) use teacher forcing
strategy in the encoder.

As shown in both Figure 7 (a)(c)(e)(g) and Table 1, Model-S (M) is worse than Model-R (M) in Case 2 prediction but
better than Model-R (M) in Case 1 prediction (2017 and 2018). Besides that, Case 1 prediction would be recommended,
as it always has better performance than Case 2 prediction.

7 Summary

Reccurent Neural Networks such as LSTMs and Seq2Seq models are able to make decent predictions of the laser
response of ECAL crystals in the future. The effects of degradation in the crystal transparency as a function of
luminosity is captured by the models along with the recovery of the crystals during absence of any radiations. The
dataset of the laser response has been made public and our intention is that these results will generate interest in the
wider High Energy Physics and Computer Science community. We hope that this dataset is used for development
and bench-marking the performance of different machine learning models that are designed for solving time series
problems.
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