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Abstract. This tutorial focuses on practical ways to handle constraints in deep learning and its applications.

We will start with constraints that can be absorbed into deep neural networks, then move to simple

constraints that allow projected-gradient style algorithms. For nontrivial constraints, we will discuss

standard numerical methods such as penalty methods and augmented Lagrangian methods. Our

tutorial will culminate with the introduction of NCVX, a general-purpose optimization package we

have built to solve generic constrained deep learning problems. We will draw concrete examples

from various scientific and engineering domains such as computer vision, structure design, physics-

aware machine learning, and imbalanced learning, to help the audience to understand and apply

these practical numerical methods.

1. Basic Information. Imposing explicit constraints is relatively new but increasingly
pressing in deep learning, stimulated by, e.g., trustworthy AI that performs robust optimiza-
tion over complicated perturbation sets [11, 19, 10, 12, 5, 6, 17] and scientific and engineering
applications that need to respect physical laws and constraints [3, 2, 4, 13, 7, 9, 18, 20]. How-
ever, it can be hard to reliably solve constrained deep learning problems without optimization
expertise. Existing deep learning frameworks, such as TensorFlow [1] and PyTorch [21], do
not admit constraints. General-purpose optimization packages can handle constraints but do
not perform auto-di↵erentiation and have trouble dealing with nonsmoothness [23, 14, 8, 22].
In this tutorial, we will introduce various applications of constrained deep learning in science
and engineering, and also practical ways (e.g., projected gradient methods [6, 5], penalty
methods, augmented Lagrangian methods [7, 9, 18, 20]) to solve these types of problems. In
particular, we will highlight a user-friendly optimization package NCVX [15, 16] that we have
built specifically for solving constrained deep learning painlessly, and discuss practical tricks
to speed up its convergence in applications [17].

2. Target Audience. This tutorial targets applied AI practitioners and researchers, with
or without a technical background in constrained optimization. The audience is expected to
be familiar with the basic concepts in machine and deep learning. It is especially beneficial
for audiences 1) who are new to constrained deep learning and want to learn the basics of this
field quickly; 2) who want to learn the state-of-the-art works in constrained deep learning; 3)
who encounter constrained deep learning problems in their research and look for quick and
reliable numerical solvers. This tutorial will be delivered at the fresh graduate level and will
be easily accessible to both industrial and academic AI researchers and practitioners.

3. Tutorial Structure. We will introduce both scientific and engineering applications lead-
ing to constrained deep learning problems with nontrivial constraints, and practical numerical
methods to solve them. We will start with the background and motivation of deep learning
with nontrivial constraints, followed by the current challenges about solving this type of prob-
lems. Next, we will introduce the recent works in constrained deep learning, which is necessary
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in robust vision recognition and AI for science, but is not easy to solve. After that, we will
focus on a general-purpose software package targeted at constrained deep learning. Last, we
will discuss some open problems and the future directions to go.

1. Background and Motivation (20 min)
(a) Motivating examples: Robustness in vision recognition, AI for science (10 min)
(b) Challenges: Reliably solving them requires optimization expertise (10 min)

2. Concrete Examples of Constrained Deep Learning & Tailored Numerical Methods for
Solving Them (40 min)

(a) Robustness in vision recognition (10 min)
(b) Knowledge-aware machine learning (10 min)
(c) Neural structural optimization (10 min)
(d) Orthogonal recurrent neural networks (10 min)

3. Break (5 min)
4. NCVX: A General-Purpose Software Package for Constrained Deep Learning (50 min)

(a) Algorithms of NCVX (15 min)
(b) Constrained DL examples in NCVX (15 min)
(c) Practical tricks to speed up convergence (20 min)

5. Open Problems and Frontiers (10 min)
(a) Challenges (5 min)
(b) Future work (5 min)

4. Tutor’s Bios.
Buyun Liang. is a MS student of computer science at UMN, where he worked as a graduate

researcher at the GLOVEX group, led by Prof. Ju Sun. Previously he obtained his bachelor’s
degree in physics at Nanjing University, and also a master’s degree in materials science at
UMN, where his research focus is about Monte-Carlo and molecular dynamics simulation.
He is the lead author of NCVX, the general-purpose software package targeted at constrained
deep learning. He also focuses on customizing NCVX for di↵erent practical problems, such
as robustness for vision recognition and AI for science. See https://buyunliang.org for more
information.

Ryan Devera. is a first-year PhD student in Computer Science & Engineering, UMN,
working with Prof. Ju Sun on constrained deep learning and AI for science and engineering
at large. Before this, he worked for eight years as a senior data scientist, project manager,
and technical mentor in various start-up companies. He holds a master degree in applied
mathematics and bachelor degrees in mathematics and physics.

Prof. Tim Mitchell. is an assistant professor of computer science at Queens College/CUNY.
His research interests span the areas of optimization, numerical linear algebra, and scientific
computing, with one focus being computing and optimizing robustness properties of linear
dynamical systems. He is also interested in nonsmooth constrained optimization, machine
learning, and model-order reduction. He was a postdoc at the Max Planck Institute in Magde-
burg, Germany and the Courant Institute at NYU, which is where he did his PhD, and he
previously worked at IBM Thomas J. Watson Research Center in Hawthorne, New York. For
more info, see http://www.timmitchell.com.
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Prof. Ju Sun. is an assistant professor at the Department of Computer Science Engi-
neering, the University of Minnesota at Twin Cities. His research interests span computer
vision, machine learning, numerical optimization, data science, computational imaging, and
healthcare. His recent e↵orts are focused on the foundation and computation for deep learning
and applying deep learning to tackle challenging science, engineering, and medical problems.
Before this, he worked as a postdoc scholar at Stanford University (2016-2019), obtained his
Ph.D. degree from Electrical Engineering of Columbia University in 2016 (2011-2016), and
B.Eng. in Computer Engineering (with a minor in Mathematics) from the National Univer-
sity of Singapore in 2008 (2004-2008). He won the best student paper award from SPARS’15,
honorable mention of doctoral thesis for the New World Mathematics Awards (NWMA) 2017,
and AAAI New Faculty Highlight Programs 2021.

5. History. This is the first time we will present this tutorial. We plan to submit similar
tutorial proposals to other top machine learning, computer vision, and relevant scientific and
engineering conferences, with the applications tailored more to their domains.
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