

Projected gradient descent

Problem: tricky to set iteration number & step size i.e., tricky to decide where to stop

Penalty method

Problem: large **constraint violation** or **suboptimal** solution

1.2 Neural Topology Optimization

$$\min_{\boldsymbol{\theta},\boldsymbol{u}} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{K} (g_{\boldsymbol{\theta}}(\boldsymbol{\beta})) \boldsymbol{u}$$

s.t. $\boldsymbol{K} (g_{\boldsymbol{\theta}}(\boldsymbol{\beta})) \boldsymbol{u} = \boldsymbol{f}$
 $\boldsymbol{V} (g_{\boldsymbol{\theta}}(\boldsymbol{\beta})) \leq v_0$
 $g_{\boldsymbol{\theta}}(\boldsymbol{\beta}) \in \{0,1\}^d$

Neural structural optimization

0.6 0.8

Thin Support Bride

Solution from *PyGRANSO* (ours)

Cons of SOTA unconstrained optimization methods:

- **Solving linear systems** to eliminate the physical constraint
- Use **problem specific technique** to handle design constraints
- Cannot handle discrete-valued optimization variables

1.3 Other problems

- Lagrangian methods for imbalanced learning: infeasible solution, slow convergence
- Augmented Lagrangian methods for PINNs: infeasible solution
- First-order solver for PINNs: low quality solution

[3] Liang, H., Liang, B., Cui, Y., Mitchell, T., & Sun, J. (2022). Optimization for robustness evaluation beyond & metrics. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop).

When Deep Learning Meets Nontrivial Constra

Buyun Liang¹, Wenjie Zhang¹, Ryan de Vera¹, Hengyue Liang², Tim Mitchell³, Ju Sun ¹ Department of Computer Science and Engineering, University of Minnesota ² Department of Electrical and Computer Engineering, University of Minnesota

³ Department of Computer Science, Queens College, City University of New York

2. No good solvers for CDL yet

Solvers or modeling languages	Nonconvex	Nonsmooth	Differentiable manifold constraints	General smooth constraint	Specific constrained ML problem	General CDL
PyTorch, Tensorflow, JAX, MXNet	\checkmark	\checkmark	×	×	×	×
CVX, AMPL, YALMIP, DPT3, Cplex, Gurobi*, SDPT3, TFOCS	×	✓	×	×	×	×
(Py)manopt, Geomstats, McTorch, Geoopt	\checkmark	\checkmark	✓	×	×	×
NITRO, IPOPT, GENO, ensmallen, TFCO, Cooper	\checkmark	\checkmark	\checkmark	✓	×	×
Scikit-learn, MLib, Weka	\checkmark	\checkmark	×	×	\checkmark	×

funct

3. A solver for constrained optimization

Principled answers to issues in CDL methods

Stationarity & feasibility check: KKT condition Line search methods **Gradient-sampling**-based idea for nonsmoothness

A principled solver: GRANSO

 $\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}), s.t. \ c_i(\boldsymbol{x}) \le 0, \forall i \in \zeta; c_j(\boldsymbol{x}) = 0, \forall j \in \xi$

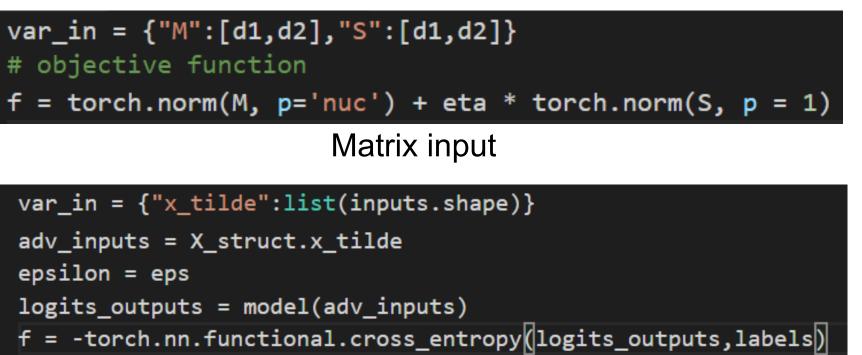
Nonconvex, nonsmooth, constrained

Keep advantages: Principled stopping criterion and line search	Constraint-folding Reduce # of constraints: reduce the cost of QP in the SC	ϽP	
 ⇒ obtain a solution with certificate BFGS-Sequential quadratic programming ⇒ reasonable speed and high-precision solution 		Equality Constraint Inequality Constraint	
Problems: Lack of auto-differentiation	$\mathcal{F}(\mathbf{h}_1(\mathbf{x}) , \cdots, \mathbf{h}_j(\mathbf{x}) , \max\{c_1(\mathbf{x}), 0\} \cdots, \max\{c_j(\mathbf{x}), 0\} \cdots$	$\{c_i(\boldsymbol{x}), 0\}) \leq 0$	
Lack of GPU Support No native support of tensor variables	Constrained Deep Learning Applications		
⇒ impossible to do deep learning with GRANSO!	See ncvx.org for detailed examples for CDL!		

4. N

First Adv Au

Auto


end soln

General Tensor Variables

Constraint folding

See ncvx.org for detailed examples for CDL!

aints n ¹		UNIVERSITY OF MINNESOTA			
ICVX PyGRANSO	PyG	RANSO			
st general-purpose solv	ver for CDL				
vantages: uto-differentiation; GPU Suppo	ort; support of tenso	r variables			
o-Differentiation					
$\min_{\boldsymbol{q}\in\mathbb{R}^n} f(\boldsymbol{q}) \doteq \frac{1}{m} * \ \boldsymbol{q}^{T} \boldsymbol{Y}$ Orthogonal dicti		$\ _{2} = 1$			
<pre>def fn(X_struct):</pre>					
GRANSO	PyGRANSO				

Higher order tensor input

