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1. Motivating examples & methods

Maximum adversarial loss

2. No good solvers for CDL yet
(Constrained deep learning: CDL)
1.1 Robustness evaluation

Problem: tricky to set iteration number & step size
i.e.,  tricky to decide where to stop 

• Projected gradient descent

• Penalty method
Problem: large constraint violation or suboptimal solution

3. A solver for constrained optimization
• Principled answers to issues in CDL methods

Stationarity & feasibility check: KKT condition
Line search methods
Gradient-sampling-based idea for nonsmoothness

• A principled solver: GRANSO

Nonconvex, nonsmooth, constrained

Keep advantages:
Principled stopping criterion and line search
⇒ obtain a solution with certificate 

BFGS-Sequential quadratic programming
⇒ reasonable speed and high-precision solution

Problems:
Lack of auto-differentiation
Lack of GPU Support
No native support of tensor variables 

First general-purpose solver for CDL

Advantages:
Auto-differentiation; GPU Support; support of tensor variables 

See ncvx.org for detailed examples for CDL!
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Neural structural optimization Solution from PyGRANSO (ours)

Cons of SOTA unconstrained optimization methods:
• Solving linear systems to eliminate the physical constraint
• Use problem specific technique to handle design constraints
• Cannot handle discrete-valued optimization variables

1.2 Neural Topology Optimization

4. NCVX PyGRANSO
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Constrained Deep Learning Applications
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Minimum distortion radius

1.3 Other problems
• Lagrangian methods for imbalanced learning: infeasible solution, 

slow convergence
• Augmented Lagrangian methods for PINNs: infeasible solution
• First-order solver for PINNs: low quality solution

⇒ impossible to do deep learning with GRANSO!

Auto-Differentiation

Orthogonal dictionary learning

General Tensor Variables

Matrix input

Higher order tensor input

GRANSO PyGRANSO
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Constraint-folding
Reduce # of constraints: reduce the cost of QP in the SQP

h3 : = 0 ⇔ h3 : ≤ 0,

F* : ≤ 0 ⇔ max F* : , 0 ≤ 0,

ℱ( h0 : ,⋯ , h3 : ,max F0 : , 0 ⋯ ,max F* : , 0 ) ≤ 0

Equality Constraint
Inequality Constraint


