
Deep Learning with Constraints
and Nonsmoothness

Ju Sun
Computer Science & Engineering

University of Minnesota

Thanks to

Buyun Liang
(Master, CS&E, UMN)

Hengyue Liang
(PhD, ECE, UMN)

Prof. Ying Cui
(ISYE, UMN)

Dr. Tim Mitchell
(MPI Magdeburg →
Queens College, CUNY)

A quick example

Try to change the label

Small perturbation

Still a valid image

A quick example
How to solve

Unconstrained optimization only

Projected gradient methods
Simple d only

https://robustbench.github.io/

Perceptual metrics ???

https://robustbench.github.io/

A quick example https://ncvx.org/

https://ncvx.org/

Motivation

Example 1: Robustness of deep models
Robustness in adversarial settings Robustness limit of deep models

(safety radius)

https://robustbench.github.io/

● SOTA PGD-based methods only for
● Hand-optimized step-size schedule

https://robustbench.github.io/

Example 2: Physics-informed neural networks (PINNs)

- Auto-differentiation replaces finite-difference (mesh-free)
- Potential for efficiently solving high-dimensional problems
- SOTA: penalty methods (recently Lagrangian methods)

PDE Boundary Condition

Ref: Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM Review 63.1 (2021): 208-228.

Observations

● People try to avoid complicated constraints

● If constraints cannot be avoided, people will do naive things — penalty
methods (e.g., Lagrangian methods)

General-purpose solvers

Solvers Nonconvex Nonsmooth
Differentiable
manifold
constraints

General
smooth
constraint

Specific
constrained
ML problem

SDPT3, Gurobi, Cplex, TFOCS,
CVX(PY), AMPL, YALMIP

❌ ✔ ❌ ❌ ❌

PyTorch, Tensorflow ✔ ✔ ❌ ❌ ❌

(Py)manopt, Geomstats, McTorch,
Geoopt, GeoTorch

✔ ✔ ✔ ❌ ❌

KNITRO, IPOPT, GENO, ensmallen ✔ ✔ ✔ ✔ ❌

Scikit-learn, MLib, Weka ✔ ✔ ❌ ❌ ✔

NCVX PyGRANSO

https://ncvx.org/

https://ncvx.org/

Key algorithm
Nonconvex, nonsmooth, constrained

Exact penalty method

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained
optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Penalty sequential quadratic programming (P-SQP)

http://www.timmitchell.com/software/GRANSO/

http://www.timmitchell.com/software/GRANSO/

Algorithm highlights

Steering strategy for the penalty parameter

Stationarity based on (approximate) gradient sampling

If feasibility improvement is insufficient :

Limitations of GRANSO

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables

⇒ impossible to do deep learning with GRANSO

analytical gradients required

vector variables only

http://www.timmitchell.com/software/GRANSO/

http://www.timmitchell.com/software/GRANSO/

NCVX PyGRANSO

Orthogonal Dictionary Learning (ODL)

1) Auto-Differentiation

Analytical gradients No Analytical gradients

https://ncvx.org/

https://ncvx.org/

NCVX PyGRANSO
2) GPU acceleration for large scale problems

Orthogonality-constrained RNN

GPU: ~7.2 s for 100 iter CPU: ~17.6 s for 100 iter

https://ncvx.org/

https://ncvx.org/

NCVX PyGRANSO
3) General Tensor Variables

Scalar input

Vector input

Matrix inputs

Higher order tensor input

https://ncvx.org/

https://ncvx.org/

Example 1: Support Vector Machine (SVM)

Soft-margin SVM

Support Vector Machine

Liblinear (coordinate descent)

vs PyGRANSO

Binary classification (odd vs even
digits) on MNIST dataset

Example 2: Orthogonal RNN
 is from the weights of recurrent
kernel (subvector of)

Each layer computes the following function

Orthogonal RNN

Train accuracy Test accuracy

GeoTorch 93.75% 88.60%

PyGRANSO 94.80% 89.10%

Compared with:

GeoTorch: A gradient-based manifold optimization
method

1st, 2nd and 3rd row of the 28X28 image
https://github.com/Lezcano/geotorch

https://github.com/Lezcano/geotorch

Example 3: Robustness—max formulation

Robustness: max formulation
robust accuracy:

lower means more effective attack

Results taken from: Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, Ju Sun. On Optimization and Optimizers in Adversarial
Robustness (tentative). In submission to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Example 4: Robustness—min formulation

Robustness: min formulation
CIFAR10 dataset

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack L2 attack Linf attack

Compared with FAB [iterative constraint
linearization + projected gradient]
https://github.com/fra31/auto-attack

https://github.com/fra31/auto-attack

Practical & crucial tricks ● Constraint folding

Equality into non-negative inequality

Inequality into nonnegative inequality

All non-negative inequalities into one

● Reduce # constraints
○ Reduce cost of QP in the SQP
○ Reduce cost of AD

Enabled by NCVX’s ability to handle nonsmoothness

Practical & crucial tricks ● Constraint folding

Obj - W

Obj - W/O

Feas - W

Feas -
W/O

Practical & crucial tricks ● Rescaling

Obj - W

Obj - W/OFeas - W

Feas -
W/O

Rescaling objective

Folding scale:

Practical & crucial tricks ● Reformulation

Folding

Obj - W

Obj - W/O
Feas - W

Feas -
W/O

Practical & crucial tricks ● Fold constraints into DNNs

Obj - W

Obj - W/O
Feas - W

Feas -
W/O

Summary https://ncvx.org/

Practical tricks to speed up
● Constraint folding (into a single one)
● Objective and constraint rescaling
● Reformulation
● Build constraints into DNNs

A solver for constrained, nonsmooth deep learning problems
● Auto-differentiation
● GPU support
● Tensor variable support

Next steps
● Autoscaling
● Stochastic objective

https://ncvx.org/

References

● NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in
Machine Learning.
Buyun Liang, Tim Mitchell, Ju Sun. 2021 https://arxiv.org/abs/2111.13984

● NCVX: A General-Purpose Optimization Solver for Machine Learning, and Practical
Tricks.
Buyun Liang, Tim Mitchell, Ying Cui, Ju Sun. In submission to IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

● On Optimization and Optimizers in Adversarial Robustness (tentative).
Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, Ju Sun. In submission to IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

https://ncvx.org/

https://arxiv.org/abs/2111.13984
https://ncvx.org/

