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A quick example 

Try to change the label 

Small perturbation 

Still a valid image  



A quick example 
How to solve 

Unconstrained optimization only 

Projected gradient methods 
Simple d only 

https://robustbench.github.io/ 

Perceptual metrics ??? 

https://robustbench.github.io/


A quick example https://ncvx.org/ 

https://ncvx.org/


Motivation



Example 1: Robustness of deep models 
Robustness in adversarial settings Robustness limit of deep models 

(safety radius)  

https://robustbench.github.io/ 

● SOTA PGD-based methods only for
● Hand-optimized step-size schedule  

https://robustbench.github.io/


Example 2: Physics-informed neural networks (PINNs) 

- Auto-differentiation replaces finite-difference (mesh-free)  
- Potential for efficiently solving high-dimensional problems 
- SOTA: penalty methods (recently Lagrangian methods)  

PDE Boundary Condition

Ref: Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM Review 63.1 (2021): 208-228.



Observations

● People try to avoid complicated constraints

● If constraints cannot be avoided, people will do naive things — penalty 
methods  (e.g., Lagrangian methods)  



General-purpose solvers 

Solvers Nonconvex Nonsmooth
Differentiable 
manifold 
constraints

General 
smooth 
constraint

Specific 
constrained 
ML problem

SDPT3, Gurobi, Cplex, TFOCS, 
CVX(PY), AMPL, YALMIP

❌ ✔ ❌ ❌ ❌

PyTorch, Tensorflow ✔ ✔ ❌ ❌ ❌

(Py)manopt, Geomstats, McTorch, 
Geoopt, GeoTorch

✔ ✔ ✔ ❌ ❌

KNITRO, IPOPT, GENO, ensmallen ✔ ✔ ✔ ✔ ❌

Scikit-learn, MLib, Weka ✔ ✔ ❌ ❌ ✔



NCVX PyGRANSO

https://ncvx.org/ 

https://ncvx.org/


Key algorithm
Nonconvex, nonsmooth, constrained

Exact penalty method 

Ref: Curtis, Frank E., Tim Mitchell, and Michael L. Overton. "A BFGS-SQP method for nonsmooth, nonconvex, constrained 
optimization and its evaluation using relative minimization profiles." Optimization Methods and Software 32.1 (2017): 148-181.

Penalty sequential quadratic programming (P-SQP)

http://www.timmitchell.com/software/GRANSO/ 

http://www.timmitchell.com/software/GRANSO/


Algorithm highlights 

Steering strategy for the penalty parameter 

Stationarity based on (approximate) gradient sampling  

If feasibility improvement is insufficient :
 



Limitations of GRANSO

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables 

⇒ impossible to do deep learning with GRANSO 

analytical gradients required 

vector variables only 

http://www.timmitchell.com/software/GRANSO/ 

http://www.timmitchell.com/software/GRANSO/


NCVX PyGRANSO

Orthogonal Dictionary Learning (ODL)

1) Auto-Differentiation

Analytical gradients No Analytical gradients

https://ncvx.org/ 

https://ncvx.org/


NCVX PyGRANSO
2)     GPU acceleration for large scale problems

Orthogonality-constrained RNN

GPU: ~7.2 s for 100 iter CPU: ~17.6 s for 100 iter

https://ncvx.org/ 

https://ncvx.org/


NCVX PyGRANSO
3)    General Tensor Variables

Scalar input

Vector input

Matrix inputs

Higher order tensor input

https://ncvx.org/ 

https://ncvx.org/


Example 1: Support Vector Machine (SVM) 

Soft-margin SVM 



Support Vector Machine

Liblinear (coordinate descent) 

vs PyGRANSO

Binary classification (odd vs even 
digits) on MNIST dataset



Example 2: Orthogonal RNN
      is from the weights of recurrent 
kernel (subvector  of       )

Each layer computes the following function



Orthogonal RNN

Train accuracy Test accuracy

GeoTorch 93.75% 88.60%

PyGRANSO 94.80% 89.10%

Compared with: 

GeoTorch: A gradient-based manifold optimization
method 

1st, 2nd and 3rd row of the 28X28 image
https://github.com/Lezcano/geotorch 

https://github.com/Lezcano/geotorch


Example 3: Robustness—max formulation 



Robustness: max formulation
robust accuracy:

lower means more effective attack

Results taken from: Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, Ju Sun. On Optimization and Optimizers in Adversarial 
Robustness (tentative).  In submission to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. 



Example 4: Robustness—min formulation



Robustness: min formulation
CIFAR10 dataset 

X-axis: image index; Y-axis: PyGRANSO radius - FAB radius

L1 attack L2 attack Linf attack

Compared with FAB   [iterative constraint 
linearization  + projected gradient] 
https://github.com/fra31/auto-attack 

https://github.com/fra31/auto-attack


Practical & crucial tricks ● Constraint folding 

Equality into non-negative inequality    

Inequality into nonnegative  inequality    

All non-negative inequalities into one 

● Reduce # constraints 
○ Reduce cost of QP in the SQP 
○ Reduce cost of AD 

Enabled by NCVX’s ability to handle nonsmoothness 



Practical & crucial tricks ● Constraint folding 

Obj - W

Obj - W/O

Feas - W

Feas - 
W/O



Practical & crucial tricks ● Rescaling

Obj - W

Obj - W/OFeas - W

Feas - 
W/O

Rescaling objective 

Folding scale: 



Practical & crucial tricks ● Reformulation 

Folding 

Obj - W

Obj - W/O
Feas - W

Feas - 
W/O



Practical & crucial tricks ● Fold constraints into DNNs 

Obj - W

Obj - W/O
Feas - W

Feas - 
W/O



Summary https://ncvx.org/ 

Practical tricks to speed up 
● Constraint folding (into a single one)  
● Objective and constraint rescaling 
● Reformulation 
● Build constraints into DNNs 

A solver for constrained, nonsmooth deep learning problems
● Auto-differentiation 
● GPU support 
● Tensor variable support 

Next steps 
● Autoscaling 
● Stochastic objective 

https://ncvx.org/
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