

When Deep Learning Meets Nontrivial Constraints

Buyun Liang, Ryan D Devera, Hengyue Liang, Wenjie Zhang, Tim Mitchell, Ju Sun

1. Motivating examples & methods

(Constrained deep learning: CDL)

1.1 Embedding constraints into DL models

Projected gradient descent

Key hyperparameters: (1) step size (2) iteration number

Problem: tricky to set **iteration number** & **step size**

i.e., tricky to decide where to stop

Penalty method

 $d(\boldsymbol{x}, \boldsymbol{x}') \doteq \|\phi(\boldsymbol{x}) - \phi(\boldsymbol{x}')\|_2$ where $\phi(\boldsymbol{x}) \doteq [\widehat{g}_1(\boldsymbol{x}), \dots, \widehat{g}_L(\boldsymbol{x})]$

Perceptual distance

Projection onto the constraint is complicated

 $\max_{\widetilde{\mathbf{x}}} \qquad \mathcal{L}(f(\widetilde{\mathbf{x}}), y) - \lambda \max\left(0, \|\phi(\widetilde{\mathbf{x}}) - \phi(\mathbf{x})\|_2 - \epsilon\right)$

Solve it for each fixed λ and then increase λ

Problem: large **constraint violation** or **suboptimal** solution

Ref: [1] Liang, B., Mitchell, T., & Sun, J. (2022). NCVX: A general-purpose optimization solver for constrained machine and deep learning. In OPT 2022: Optimization for Machine Learning. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop). [2] Liang, H., Liang, B., Peng, L., Cui, Y., Mitchell, T., & Sun, J. (2023). Optimization and Optimizers for Adversarial Robustness. arXiv preprint arXiv:2303.13401. [3] Liang, H., Liang, B., Cui, Y., Mitchell, T., & Sun, J. (2022). Optimization for robustness evaluation beyond & metrics. In OPT 2022: Optimization for Imbalanced Classification. In preparation for the Journal of Machine Learning Research.

1.3 Imbalanced learning

Class imbalance in healthcare datasets

	Predicted POS	Predicted NEG
POS	70	30
NEG	1000	9000

9070/10100 = 0.898 Accuracy True Positive Rate (Sensitivity, Recall): 0.7 True Negative Rate (Specificity): 0.9 (0.7 + 0.9)/2 = 0.80Balanced Accuracy: Precision (POS): 70/1070 = 0.065 2*0.065*0.7/(0.065 + 0.7) = 0.119 F1 Score:

Reliable evaluation in imbalanced learning: Precision needed

Accuracy maximization

Typical learning objective

fix precision, optimize recall (FPOR): $\max_{\boldsymbol{\theta},t} \operatorname{recall}(f_{\boldsymbol{\theta}},t)$ s.t. $\operatorname{precision}(f_{\boldsymbol{\theta}},t) \geq \alpha$,

fix recall, optimize precision (FROP): $\max_{A_t} \text{ precision}_t$ s. t. recall $(f_{\theta}, t) \ge \alpha$,

optimize F_{β} **score (OFBS):** $\max_{\theta t} F_{\beta}(f_{\theta}, t),$

optimize AP (OAP): max $AP(f_{\theta})$.

Lagrangian method

Idea: alternating minimize x and maximize λ via gradient descent

 $\min_{\boldsymbol{x}} f(\boldsymbol{x}) \quad \text{s.t. } g(\boldsymbol{x}) \leq \boldsymbol{0}$ $\min_{\boldsymbol{x}} \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} f(\boldsymbol{x}) + \boldsymbol{\lambda}^{\mathsf{T}} g(\boldsymbol{x})$

Problem: infeasible solution; slow convergence

 $\min_{f \in \mathcal{H}} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}_{\boldsymbol{x}, \boldsymbol{y}}} \mathbb{1} \left\{ \boldsymbol{y} \neq f(\boldsymbol{x}) \right\}$

1.4 Other problems

- Augmented Lagrangian methods for PINNs: infeasible solution
- First-order solver for PINNs: low quality solution

2. No good solvers for CDL yet

Solvers or modeling languages	Nonconvex	Nonsmooth	Differentiable manifold constraints	General smooth constraint	Specific constrained ML problem	General CDL
PyTorch, Tensorflow, JAX, MXNet	\checkmark	\checkmark	×	×	×	×
CVX, AMPL, YALMIP, SDPT3, Cplex, Gurobi*, SDPT3, TFOCS	×	~	×	×	×	×
(Py)manopt, Geomstats, McTorch, Geoopt	\checkmark	~	✓	×	×	×
KNITRO, IPOPT, GENO, ensmallen, TFCO, Cooper	\checkmark	✓	\checkmark	\checkmark	×	×
Scikit-learn, MLib, Weka	\checkmark	\checkmark	×	×	\checkmark	×

3. GRANSO & PyGRANSO

Principled answers to issues in CDL methods

Stationarity & feasibility check: KKT condition Line search methods **Gradient-sampling**-based idea for nonsmoothness

• A principled solver: GRANSO

Nonconvex, nonsmooth, constrained $\min_{\boldsymbol{x}\in\mathbb{R}^n} f(\boldsymbol{x}), \text{ s.t. } c_i(\boldsymbol{x}) \leq 0, \ \forall \ i\in\mathcal{I}; \ c_i(\boldsymbol{x})=0, \ \forall \ i\in\mathcal{E}.$

Penalty sequential quadratic programming

$$\min_{d \in \mathbb{R}^n, s \in \mathbb{R}^p} \quad \mu(f(x_k) + \nabla f(x_k)^{\mathsf{T}}d) + e^{\mathsf{T}}s + \frac{1}{2}d^{\mathsf{T}}H_kd$$

s.t. $c(x_k) + \nabla c(x_k)^{\mathsf{T}}d \le s, \quad s \ge 0,$

Keep advantages:

Principled stopping criterion and line search, to obtain a solution with certificate (stationarity & feasibility check) Quasi-newton style method for fast convergence, i.e., reasonable speed and high-precision solution

Problem:

Lack of Auto-Differentiation Lack of **GPU** Support No native support of **tensor** variables \Rightarrow impossible to do **deep learning** with GRANSO

NCVX PyGRANSO: first general-purpose solver for CDL

Advantages:

Auto-Differentiation; GPU Support; support of **tensor** variables

Constrained folding:

Reduce # of constraints: reduce the cost of QP in the SQP

 $h_j(\boldsymbol{x}) = 0 \iff |h_j(\boldsymbol{x})| \le 0 \quad c_i(\boldsymbol{x}) \le 0 \iff \max\{c_i(\boldsymbol{x}), 0\} \le 0$

Equality into non-negative inequality inequality into non-negative inequality

 $\mathcal{F}(|h_1(\boldsymbol{x})|, \cdots, |h_i(\boldsymbol{x})|, \max\{c_1(\boldsymbol{x}), 0\},$ $\cdots, \max\{c_i(\boldsymbol{x}), 0\}) \leq 0,$

All non-negative inequalities into one

See **ncvx.org** for detailed examples for CDL!