NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning

Buyun Liang Apr 7, 2023

Motivation: Trustworthy AI

Change the predicted class

Valid image constraints

Motivation: AI for science & engineering

Bayonne Bridge

Topology optimization results

Topology optimization

Deep image prior

$$\min_{oldsymbol{ heta},oldsymbol{u}} oldsymbol{u}^{\intercal} oldsymbol{K}(oldsymbol{G}_{oldsymbol{ heta}}(oldsymbol{eta}))oldsymbol{u}$$

s. t. $oldsymbol{K}(oldsymbol{G}_{oldsymbol{ heta}}(oldsymbol{eta}))oldsymbol{u} = oldsymbol{f}, \sum_{i\in\Omega} [oldsymbol{G}_{oldsymbol{ heta}}(oldsymbol{eta})]_i \leq v_0, oldsymbol{G}_{oldsymbol{ heta}}(oldsymbol{eta}) \in \{0,1\}^n$

Image Credit:

https://www.comsol.com/blogs/finding-a-structures-best-design-with-topology-optimization

Existing Software packages

Solvers	Nonconvex	Nonsmooth	Differentiable manifold constraints	General smooth constraint	Specific constrained ML problem
SDPT3, Gurobi, Cplex, TFOCS, CVX(PY), AMPL, YALMIP	×	\checkmark	×	×	×
PyTorch, Tensorflow	\checkmark	\checkmark	×	×	×
(Py)manopt, Geomstats, McTorch, Geoopt, GeoTorch	V	V	\checkmark	×	×
KNITRO, IPOPT, GENO, ensmallen	V	\checkmark	V	\checkmark	×
Scikit-learn, MLib, Weka	\checkmark	\checkmark	×	×	\checkmark

NCVX PyGRANSO: First general-purpose solver for constrained DL problems

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x}), ext{ s.t. } c_i(\mathbf{x})\leq 0, orall i\in\mathcal{I}; \ c_i(\mathbf{x})=0, orall i\in\mathcal{E}$$

Key Algorithm^[1]

Nonconvex, nonsmooth, constrained

$$\min_{oldsymbol{x}\in\mathbb{R}^n}f(oldsymbol{x}), \hspace{0.1cm} ext{s.t.} \hspace{0.1cm} c_i(oldsymbol{x})\leq 0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{I}; \hspace{0.1cm} c_i(oldsymbol{x})=0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{E}.$$

Exact penalty function

$$\phi(x;\mu) = \mu f(x) + v(x).$$

Penalty sequential quadratic programming
$$\min_{d \in \mathbb{R}^n, s \in \mathbb{R}^p} \mu(f(x_k) + \nabla f(x_k)^T d) + e^T s + \frac{1}{2} d^T H_k d$$

(P-SQP)
s.t. $c(x_k) + \nabla c(x_k)^T d < s, s > 0,$

Key Algorithm^[1]

Advantages

- Reliable step-size rule
- Principled stopping criterion

1:	Set $H_0 := I$ and $\mu := \mu_0$
2:	Set $\phi(\cdot)$ as the penalty function given in (2) using $f(\cdot)$ and $c(\cdot)$
3:	Set $\nabla \phi(\cdot)$ and $v(\cdot)$ as the associated gradient (4) and violation function (3)
4:	Evaluate $\phi_0 := \phi(x_0; \mu), \nabla \phi_0 := \nabla \phi(x_0; \mu)$, and $v_0 := v(x_0)$
5:	for $k = 0, 1, 2, \dots$ do
6:	$[d_k, \hat{\mu}] := $ sqp_steering_strategy (x_k, H_k, μ)
7:	if $\hat{\mu} < \mu$ then
8:	// Penalty parameter has been lowered by steering; update current iterate
9:	Set $\mu := \hat{\mu}$
10:	Reevaluate $\phi_k := \phi(x_k; \mu), \nabla \phi_k := \nabla \phi(x_k; \mu)$, and $v_k := v(x_k)$
11:	end if
12:	$[x_{k+1}, \phi_{k+1}, \nabla \phi_{k+1}, v_{k+1}] := \mathbf{inexact_linesearch}(x_k, \phi_k, \nabla \phi_k, d_k, \phi(\cdot), \nabla \phi(\cdot))$
13:	Compute d_{\diamond} via (12) and (13)
14:	if $ d_{\diamond} _2 < \tau_{\diamond}$ and $\nu_{k+1} < \tau_{\nu}$ then
15:	// Stationarity and feasibility sufficiently attained; terminate successfully
16:	break
17:	end if
18:	Set H_{k+1} using BFGS update formula

19: end for

Limitations of GRANSO

```
% Gradient of inner product with respect to A
f_grad = imag((conj(Bty)*Cx.')/(y'*x));
f_grad = f_grad(:);
% Gradient of inner product with respect to A
ci_grad = real((conj(Bty)*Cx.')/(y'*x));
```

analytical gradients required

= ci grad(:);

ci grad

р	=	<pre>size(B,2);</pre>
m	=	<pre>size(C,1);</pre>
х	=	<pre>reshape(x,p,m)</pre>

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables

⇒ impossible to do deep learning with GRANSO

vector variables only

Ref: **Buyun Liang**, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022).

÷

NCVX PyGRANSO: Advantages

C

1) Auto-Differentiation

https://ncvx.org/

Orthogonal Dictionary Learning (ODL)

$$\min_{\boldsymbol{q} \in \mathbb{R}^{n}} f(\boldsymbol{q}) \doteq \frac{1}{m} \left\| \boldsymbol{q}^{\mathsf{T}} \boldsymbol{Y} \right\|_{1}, \quad \text{s.t.} \ \left\| \boldsymbol{q} \right\|_{2} = 1$$

Demo 1: GRANSO for ODL

Demo 2: PyGRANSO for ODL

Ref: **Buyun Liang**, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022).

NCVX PyGRANSO: Advantages

2) GPU acceleration for large scale problems

Orthogonality-constrained RNN

GPU: ~7.2 s for 100 iter

PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Version 1.2.0 Licensed under the AGPLv3, Copyright (C) 2021-2022 Tim Mitchell and Buyun Liang							
Problem specifications: # of variables : 49010 # of inequality constraints : 0 # of equality constraints : 1							
Limited-memory mode enabled with NOTE: limited-memory mode is gen recommended for nonsmooth proble	size = 20. erally NOT ns.						
Constraint Constrait Constrait Constrait							
0 186.0000 231.118993915 10 2.781284 6.1553876205 20 1.67752 2.420252420 30 0.785517 1.6347476243 40 0.785517 1.6347476243 50 0.785517 1.4347476243 60 785517 1.4347476243 60 785517 1.6347476243 60 757716 6.636614902 90 6.22183 6.34727493398 90 6.22183 6.3322515702 100 6.22183 6.3322515702	2.31110993915 1.83942004642 1.85198233657 1.8414672987 1.86152922129 1.84741128366 1.74086384511 1.62370589875 1.53948397613 1.49579349213 1.47195631688	- 2.20e-14 - 1.040438 - 0.430468 - 0.172018 - 0.007458 - 0.005551 - 0.0036144 - 0.0036740 - 0.001379 - 0.001399	- 1 0.00000 S 3 4.00000 S 1.000000 S 3 4.000000 S 1.000000 S S 1.000000 S S 1.000000 S S 1.000000 S S 3 4.000000 S 3 4.000000 S 3 4.000000 S 3 4.000000 S 3 4.000000	1 70.02796 1 0.027966 1 0.027306 1 0.07334 1 0.070584 1 0.027384 1 0.027384 1 0.027384 1 0.027384 1 0.027384 1 0.02739 1			
F = final iterate, B = Best (to tolerance), MF = Most Feasible Optimization results:							
F 1.47195631688 - 0.061399 B 2.31110939315 - 2.20e-14 VF 2.31110939315 - 2.20e-14							
Iterations: 100 Function evaluations: 148 PydMkED termination code: 4 max iterations reached.							
Total Wall Time: 7.24015998840332s							

NCVX

https://ncvx.org/

CPU: ~17.6 s for 100 iter

PyGRAM Versio Licens	NSO: A PyTon on 1.2.0 sed under th	-ch-enabled port o ne AGPLv3, Copyrig	of GRANSO with au ght (C) 2021-2022	to-diff Tim Mi	erentiation tchell and I	Buyun	Liang			
Proble # of # of # of	em specifica variables inequality equality co	ntions: constraints onstraints	: 48010 : 0 : 1							
Limite NOTE: recomm	ed-memory mo limited-men mended for r	ode enabled with mory mode is gene monsmooth problem	size = 20. rally NOT s.							
Iter	< Penal Mu	ty Function> Value	Objective	Total Ineq	Violation Eq	< SD	- Line Se Evals	earch> t	<- Sta Grads	tionarity -> Value
0 10 20 30 40 50 60 70 80 90 100	$\begin{array}{c} 100.0000\\ 3.815204\\ 1.478088\\ 1.677526\\ 0.572642\\ 0.338139\\ 0.221853\\ 0.117902\\ 0.077355\\ 0.062658\\ 0.029969\\ \end{array}$	234.459429436 7.61543767313 3.36426539638 2.36764743644 1.74741425646 1.47480385659 1.34061810155 1.23339816968 1.19367524620 1.17924531645 1.15301795796	2.32459429436 1.40009010433 1.1883657672 0.91175234571 0.89840965347 0.898349455270 0.87445955456 0.81824319678 0.8010161581 0.77380656707 0.7665514964		2.000000 2.273808 1.607755 1.385210 1.232947 1.171021 1.146617 1.136926 1.131713 1.130760 1.130042	*****	1 2 3 2 1 3 2 1 1 2	0.000000 2.000000 4.000000 4.000000 4.000000 4.000000 4.000000 2.000000 1.000000 2.000000 2.000000 2.000000		84.45258 0.035876 0.039562 0.122148 0.031523 0.022276 0.027327 0.029037 0.090670 0.005670 0.007646 0.003602
F = fi Optimi	inal iterate ization resu	e, B = Best (to tu ults:	olerance), MF = Mo	ost Fea	sible					
F MF	F 0.76665514964 - 1.139042 0.76665514964 - 1.130042									
Itera Functi PyGRAM	tions: ion evaluati NSO terminat	100 Lons: 182 cion code: 4 r	max iterations rea	ached.						
Total	Wall Time:	17.5637760162353	55							

Ref: **Buyun Liang**, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022).

General Tensor Variables

```
var_in = {"x1": [1], "x2": [1]}
```

Scalar input

var_in = {"q": [n,1]}

Vector input

var_in = {"M": [d1,d2],"S": [d1,d2]}

Matrix inputs

var_in = {"x_tilde": list(inputs.shape)}

Higher order tensor input

Ref: Buyun Liang, Tim Mitchell, Ju Sun. NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning. In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022).

objective function

adv_inputs = X_struct.x_tilde epsilon = epslogits_outputs = model(adv_inputs)

f = -torch.nn.functional.cross_entropy(logits_outputs, labels)

NCVX PyGRANSO: Advantages

https://ncvx.org/

(2) (1 (1)

1. Constraint-folding

Reduce # constraints

• Reduce cost of QP in the SQP

Equality into non-negative inequality

Inequality into nonnegative inequality

All non-negative inequalities into one

$$egin{aligned} h_j(oldsymbol{x}) &= 0 &\Longleftrightarrow |h_j(oldsymbol{x})| \leq 0 \ c_i(oldsymbol{x}) &\leq 0 & & \max\{c_i(oldsymbol{x}), 0\} \leq 0 \ \mathcal{F}(|h_1(oldsymbol{x})|, \cdots, |h_i(oldsymbol{x})|, \max\{c_1(oldsymbol{x}), 0\}, \ \cdots, \max\{c_j(oldsymbol{x}), 0\}) \leq 0, \end{aligned}$$

 $\mathcal{F}: \mathbb{R}^{i+j}_+ \mapsto \mathbb{R}_+ \ (\mathbb{R}_+ = \{ \alpha : \alpha \ge 0 \}) \quad \text{Can be any function satisfying} \quad \mathcal{F}(\boldsymbol{z}) = 0 \Longrightarrow \boldsymbol{z} = \boldsymbol{0}$

2. Two-stage optimization

Numerical methods may converge to **poor lc minima** for NCVX problems

Idea: different random initializations

Stage 1 (selecting the best initialization)

R different random initialization; k iterations

Stage 2 (optimization)

x^(*,o) until the stopping criterion is met

Algorithm Selection of $x^{(*,k)}$ and $x^{(*,0)}$ in the two-stage process

Require: Initialization $x^{(r,0)}$ and the corresponding intermediate optimization results $x^{(r,k)}$.

- 1: if Any $x^{(r,k)}$ is feasible then
- 2: Set $x^{(*,k)}$ to be the feasible $x^{(r,k)}$'s with the least objective value.
- 3: **else**
- 4: Set $x^{(*,k)}$ to be the $x^{(r,k)}$ with the least constraint violation.
- 5: **end if**
- 6: Set $x^{(*,0)}$ corresponds to $x^{(*,k)}$ found.
- 7: return $x^{(*,k)}$ and $x^{(*,0)}$.

3. Numerical Re-scaling

Large amount of constraints: searching direction biased towards staying feasible

4. Reformulation to accelerate convergence

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t.} \ d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon \ , \quad \boldsymbol{x}' \in [0, 1]^n \\ \min_{\boldsymbol{x}'} \ d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \end{split}$$

s.t. $\max_{i \neq y} f^i_{\theta}(\boldsymbol{x}') \geq f^y_{\theta}(\boldsymbol{x}')$, $\boldsymbol{x}' \in [0,1]^n$

Metric dOthers ℓ_1 ℓ_2 loo $\ell(\boldsymbol{y}, f_{\theta}(\boldsymbol{x}'))$ $\ell\left(\boldsymbol{y},f_{\theta}\left(\boldsymbol{x}'
ight)
ight)$ $\ell\left(oldsymbol{y},f_{ heta}\left(oldsymbol{x}'
ight)
ight)$ $\ell(\boldsymbol{y}, f_{\theta}(\boldsymbol{x}'))$ max $\|m{x}' - m{x}\|_2 \leq arepsilon$ $\|m{x}' - m{x}\|_1 \leq arepsilon$ $\max\{\boldsymbol{x}' - \boldsymbol{x} - \varepsilon \boldsymbol{1}, \quad d(\boldsymbol{x}', \boldsymbol{x}) \leq \varepsilon$ s.t. $0 \ge 0$ $\|\max\{\operatorname{concat}(-x', x'-1), 0\}\|_{2} \leq 0$ $d(\boldsymbol{x}',\boldsymbol{x})$ min $1^{\mathsf{T}}t$ $\|\boldsymbol{x}' - \boldsymbol{x}\|_2$ t s.t. max{ max{ $\operatorname{concat}(x'-x-t)$ $\operatorname{concat}(\boldsymbol{x}'-\boldsymbol{x}-t\boldsymbol{1},$ Not Not -x' + x - t, 0 Applicable $-x' + x - t\mathbf{1}, \mathbf{0} \|_{2} \le 0$ Applicable $\max_{i\neq y} f_{\boldsymbol{\theta}}^{i}(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^{y}(\boldsymbol{x}')$ $\|\max\{\operatorname{concat}(-x', x'-1), 0\}\|_{2} \leq 0$

Example: Adversarial Robustness


```
def comb fn(X struct):
    # obtain optimization variables
    x prime = X struct.x prime
    # objective function
    f = loss func(y, f theta(x prime))
    # inequality constraints
    ci = pygransoStruct()
    ci.cl = d(x,x prime) - epsilon
    ci.c2 = -x prime
    ci.c3 = x prime-1
    # equality constraint
    ce = None
    return [f,ci,ce]
# specify optimization variable (tensor)
var in = {"x prime": list(x.shape)}
# pygranso main algorithm
soln = pygranso(var in,comb fn)
```

Example: Adversarial Robustness

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t. } d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \leq \varepsilon , \quad \boldsymbol{x}' \in [0, 1]^n \end{split}$$

Standard Lp norm

$\min_{oldsymbol{x}'} \ d\left(oldsymbol{x},oldsymbol{x}' ight)$	
s.t. $\max_{i \neq y} f^i_{\boldsymbol{\theta}}(\boldsymbol{x}') \geq f^y_{\boldsymbol{\theta}}(\boldsymbol{x}')$,	$\boldsymbol{x}' \in [0,1]^n$

			APGD		P	WCF(d	ours)	Square	
Dataset	Metric (ε)	Clean	CE	\mathbf{M}	$\mathbf{CE} + \mathbf{M}$	CE	\mathbf{M}	$\mathbf{CE} + \mathbf{M}$	Μ
CIFAR-10	$\ell_1(12)$	73.29	0.97	<u>0.00</u>	0.00	17.93	0.01	0.01	2.28
	$\ell_2(0.5)$	94.61	81.81	81.06	80.92	81.99	81.02	80.87	87.9
	$\ell_{\infty}(0.03)$	90.81	69.44	<u>67.71</u>	67.33	88.71	68.20	68.17	71.6
ImageNet-100	$\ell_2(4.7)$	75.04	42.44	44.06	40.86	42.50	43.52	40.60	63.1
	$\ell_{\infty}(0.016)$	75.04	<u>46.78</u>	47.54	45.20	73.92	47.72	47.72	59.9

NCVX performs strongly and comparable to SOTA as a general solver

Example: Adversarial Robustness

Perceptual distance

$$egin{aligned} & d(oldsymbol{x},oldsymbol{x}') \doteq \|\phi(oldsymbol{x}) - \phi(oldsymbol{x}')\|_2 \ & ext{where} \quad \phi(oldsymbol{x}) \doteq [\; \widehat{g}_1(oldsymbol{x}), \dots, \widehat{g}_L(oldsymbol{x}) \;] \end{aligned}$$

$$\begin{split} \max_{\boldsymbol{x}'} \ell\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x}')\right) \\ \text{s.t. } d\left(\boldsymbol{x}, \boldsymbol{x}'\right) &\leq \varepsilon , \quad \boldsymbol{x}' \in [0, 1]^n \\ \min_{\boldsymbol{x}'} d\left(\boldsymbol{x}, \boldsymbol{x}'\right) \\ \text{s.t. } \max_{i \neq y} f_{\boldsymbol{\theta}}^i(\boldsymbol{x}') \geq f_{\boldsymbol{\theta}}^y(\boldsymbol{x}') , \ \boldsymbol{x}' \in [0, 1]^n \end{split}$$

	cross-e	ntropy loss	margin loss		
Method	Viol. (%) ↓	Att. Succ. (%) ↑	Viol. (%) \downarrow	Att. Succ. (%) ↑	
Fast-LPA	73.8	3.54	41.6	56.8	
LPA	0.00	80.5	0.00	97.0	
PPGD	5.44	25.5	0.00	38.5	
PWCF (ours)	0.62	93.6	0.00	100	

NCVX can handle general-form distances

Summary

A solver for constrained deep learning problems

- Auto-differentiation
- GPU support
- Tensor variable support

Practical techniques to speed up

- Constraint folding (into a single one)
- Two stage-optimization
- Objective and constraint rescaling
- Reformulation

Next steps

- Autoscaling
- Stochastic Optimization

Thanks to

Hengyue Liang

Ryan de Vera

Prof. Ying Cui

Prof. Qizhi He

Prof. Tim Mitchell

Prof. Ju Sun

References

- **Buyun Liang**, Wenjie Zhang, Hengyue Liang, Tim Mitchell, Ying Cui, Ju Sun. *NCVX: A General-Purpose Optimization Solver for Machine Learning, and Practical Techniques.* In preparation for IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
- **Buyun Liang**, Tim Mitchell, Ju Sun. *NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning.* In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022).
- Hengyue Liang, **Buyun Liang**, Le Peng, Ying Cui, Tim Mitchell, Ju Sun. *Optimization and Optimizers for Adversarial Robustness*. Under review at International Journal of Computer Vision (IJCV).
- Hengyue Liang, **Buyun Liang**, Le Peng, Ying Cui, Tim Mitchell, Ju Sun. *Implications of Solution Patterns on Adversarial Robustness*. In Computer Vision and Pattern Recognition (CVPR) Workshop of Adversarial Machine Learning on Computer Vision (Art of Robustness).
- Hengyue Liang, Buyun Liang, Ying Cui, Tim Mitchell, Ju Sun. Optimization for Robustness Evaluation beyond lp Metrics. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023) & Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022).

Thank you!

Key Algorithm^[1]

Nonconvex, nonsmooth, constrained

$$\min_{oldsymbol{x}\in\mathbb{R}^n}f(oldsymbol{x}), \hspace{0.1cm} ext{s.t.} \hspace{0.1cm} c_i(oldsymbol{x})\leq 0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{I}; \hspace{0.1cm} c_i(oldsymbol{x})=0, \hspace{0.1cm} orall \hspace{0.1cm} i\in\mathcal{E}.$$

Exact penalty function

$$\phi(x;\mu) = \mu f(x) + v(x).$$

Penalty sequential quadratic programming
$$\min_{d \in \mathbb{R}^n, s \in \mathbb{R}^p} \mu(f(x_k) + \nabla f(x_k)^T d) + e^T s + \frac{1}{2} d^T H_k d$$

(P-SQP)
s.t. $c(x_k) + \nabla c(x_k)^T d < s, s > 0,$

Corresponding dual

$$\max_{\lambda \in \mathbb{R}^{p}} \quad \mu f(x_{k}) + c(x_{k})^{\mathsf{T}} \lambda - \frac{1}{2} (\mu \nabla f(x_{k}) + \nabla c(x_{k}) \lambda)^{\mathsf{T}} H_{k}^{-1} (\mu \nabla f(x_{k}) + \nabla c(x_{k}) \lambda)$$

s.t. $0 \le \lambda \le e$, (8)

Primal solution (recovered from dual solution): searching direction

$$d_k = -H_k^{-1}(\mu \nabla f(x_k) + \nabla c(x_k)\lambda_k).$$
(9)

Key Algorithm^[1]

Linear model of constraint violation

 $l(d; x_k) := \| \max\{c(x_k) + \nabla c(x_k)^{\mathsf{T}} d, 0\} \|_1$

Corresponding reduction

$$l_{\delta}(d; x_k) := l(0; x_k) - l(d; x_k)$$

$$= v(x_k) - \| \max\{c(x_k) + \nabla c(x_k)^{\mathsf{T}} d, 0\} \|_1$$

$$\stackrel{2:}{\underset{4:}{5:}}{\underset{6:}{7:}}$$

Procedure 1 $[d_k, \mu_{new}]$ = sqp_steering_strategy(x_k, H_k, μ)

Input:

Current iterate x_k and BFGS Hessian approximation H_k Current value of the penalty parameter μ

Constants:

Values $c_v \in (0, 1)$ and $c_\mu \in (0, 1)$

Output:

Search direction d_k Penalty parameter $\mu_{new} \in (0, \mu]$

- 1: Solve QP (8) using $\mu_{\text{new}} := \mu$ to obtain search direction d_k from (9)
- 2: if $l_{\delta}(d_k; x_k) < c_v v(x_k)$ then
- 3: Solve (8) using $\mu = 0$ to obtain reference direction \tilde{d}_k from (9)

4: while
$$l_{\delta}(d_k; x_k) < c_{\nu} l_{\delta}(d_k; x_k)$$
 do

- $\mu_{\text{new}} := c_{\mu}\mu_{\text{new}}$ Solve QP (8) using $\mu := \mu_{\text{new}}$ to obtain search direction d_k from (9)
- 7: end while
- 8: **end if**

Gradient from l most recent iterates

 $G := [\nabla f(x_{k+1-l}) \cdots \nabla f(x_k)]$ $J_i := [\nabla c_i(x_{k+1-l}) \cdots \nabla c_i(x_k)], \quad i \in \{1, \dots, p\}$

Augmented QP
$$\max_{\sigma \in \mathbb{R}^{l}, \lambda \in \mathbb{R}^{pl}} \sum_{i=1}^{p} c_{i}(x_{k})e^{\mathsf{T}}\lambda_{i} - \frac{1}{2} \begin{bmatrix} \sigma \\ \lambda \end{bmatrix}^{\mathsf{T}}[G, J_{1}, \dots, J_{p}]^{\mathsf{T}}H_{k}^{-1}[G, J_{1}, \dots, J_{p}] \begin{bmatrix} \sigma \\ \lambda \end{bmatrix}$$

s.t. $0 \leq \lambda_{i} \leq e, e^{\mathsf{T}}\sigma = \mu, \sigma \geq 0.$ (12)

Primal solution: termination condition

$$d_{\diamond} = H_k^{-1}[G, J_1, \dots, J_p] \begin{bmatrix} \sigma \\ \lambda \end{bmatrix}$$

Key Algorithm^[1]GRANSOAugmented QP
$$\max_{\sigma \in \mathbb{R}^{l}, \lambda \in \mathbb{R}^{pl}} \sum_{i=1}^{p} c_{i}(x_{k})e^{\mathsf{T}}\lambda_{i} - \frac{1}{2} \begin{bmatrix} \sigma \\ \lambda \end{bmatrix}^{\mathsf{T}}[G, J_{1}, \dots, J_{p}]^{\mathsf{T}}H_{k}^{-1}[G, J_{1}, \dots, J_{p}] \begin{bmatrix} \sigma \\ \lambda \end{bmatrix}$$
s.t. $0 \le \lambda_{i} \le e$, $e^{\mathsf{T}}\sigma = \mu$, $\sigma \ge 0$.(12)Stationarity based on (approximate) gradient sampling $G_{k} := [\nabla f(x^{k}) \quad \nabla f(x^{k,1}) \quad \cdots \quad \nabla f(x^{k,m})]$

 $\min_{\lambda \in \mathbb{R}^{m+1}} \frac{1}{2} \|G_k \lambda\|_2^2$ s.t. $\mathbb{1}^T \lambda = 1, \ \lambda \ge 0$

Direction at **m**

Gradient sampling direction

Key Algorithm^[1]

Advantages

- Reliable step-size rule
- Principled stopping criterion

1:	Set $H_0 := I$ and $\mu := \mu_0$
2:	Set $\phi(\cdot)$ as the penalty function given in (2) using $f(\cdot)$ and $c(\cdot)$
3:	Set $\nabla \phi(\cdot)$ and $v(\cdot)$ as the associated gradient (4) and violation function (3)
4:	Evaluate $\phi_0 := \phi(x_0; \mu)$, $\nabla \phi_0 := \nabla \phi(x_0; \mu)$, and $v_0 := v(x_0)$
5:	for $k = 0, 1, 2, \dots$ do
6:	$[d_k, \hat{\mu}] := $ sqp_steering_strategy (x_k, H_k, μ)
7:	if $\hat{\mu} < \mu$ then
8:	// Penalty parameter has been lowered by steering; update current iterate
9:	Set $\mu := \hat{\mu}$
10:	Reevaluate $\phi_k := \phi(x_k; \mu), \nabla \phi_k := \nabla \phi(x_k; \mu)$, and $v_k := v(x_k)$
11:	end if
12:	$[x_{k+1}, \phi_{k+1}, \nabla \phi_{k+1}, v_{k+1}] := \mathbf{inexact_linesearch}(x_k, \phi_k, \nabla \phi_k, d_k, \phi(\cdot), \nabla \phi(\cdot))$
13:	Compute d_{\diamond} via (12) and (13)
14:	if $ d_{\diamond} _2 < \tau_{\diamond}$ and $\nu_{k+1} < \tau_{\nu}$ then
15:	// Stationarity and feasibility sufficiently attained; terminate successfully
16:	break
17:	end if
18:	Set H_{k+1} using BFGS update formula

19: end for

Limitations of GRANSO GRANSO

;

% Gradient of inner product with respect to A
f_grad = imag((conj(Bty)*Cx.')/(y'*x));
f_grad = f_grad(:);

% Gradient of inner product with respect to A ci_grad = real((conj(Bty)*Cx.')/(y'*x)); ci_grad = ci_grad(:);

analytical gradients required

р	=	<pre>size(B,2);</pre>
m	=	<pre>size(C,1);</pre>
х	=	<pre>reshape(x,p,m)</pre>

Lack of Auto-Differentiation

Lack of GPU Support

No native support of tensor variables

 \Rightarrow impossible to do deep learning with GRANSO

vector variables only