
Springer Nature 2021 LATEX template

Optimization and Optimizers for Adversarial Robustness

Hengyue Liang1*, Buyun Liang2, Le Peng2, Ying Cui3, Tim Mitchell4 and Ju Sun2*

1Department of Electrical & Computer Engineering, University of Minnesota.
2Department of Computer Science & Engineering, University of Minnesota.
3Department of Industrial & Systems Engineering, University of Minnesota.

4Department of Computer Science, Queens College, City University of New York.

*Corresponding author(s). E-mail(s): liang656@umn.edu; jusun@umn.edu;
Contributing authors: liang664@umn.edu; peng0347@umn.edu; yingcui@umn.edu;

tmitchell@qc.cuny.edu;

Abstract
Empirical evaluation of deep learning models against adversarial perturbations entails solving nontrivial
constrained optimization problems. Existing numerical algorithms commonly used in practice to
solve these problems predominantly rely on using projected gradient methods and mostly handle
perturbations modeled by ℓ1, ℓ2 and ℓ∞ distance metrics. In this paper, we introduce a novel
algorithmic framework that blends a general-purpose constrained-optimization solver PyGRANSO With
Constraint-Folding (PWCF), which can add more reliability and generality to the state-of-the-art
(SOTA) algorithms (e.g., AutoAttack). Regarding reliability, PWCF provide solutions with stationarity
measures to assess the solution quality, and is generally free from delicate hyperparameter tuning.
For generality, PWCF can handle much more general perturbation models (e.g., modeled by any
piece-wise differentiable metric) which are inaccessible to the existing project gradient methods. With
PWCF, we further explore the distinct solution patterns found by various combinations of losses,
perturbation models, and optimization algorithms used in robustness evaluation, and discuss the
possible implications of these patterns on the current robustness evaluation and adversarial training.

Keywords: deep learning, deep neural networks, adversarial robustness, adversarial attack, adversarial
training, minimal distortion radius, constrained optimization, sparsity

1 Introduction
In visual recognition, deep neural networks (DNNs)
are not robust against perturbations that are easily
discounted by human perception—either adversar-
ially constructed or naturally occurring [1–9]. A
popular way to formalize robustness is by finding
perturbations via solving the following max-form

constrained optimization problem [10, 11]:

max
x′

ℓ (y, fθ(x
′))

s. t. d (x,x′) ≤ ε , x′ ∈ [0, 1]n
(1)

Here, fθ is the DNN model; x′ is a perturbed ver-
sion of x with an allowable perturbation radius
ε measured by the distance metric d; x′ is also
encoded as a valid image by the box constraint
(n is the number of pixels). Another popular for-
malism of robustness is by means of a min-form

1

Springer Nature 2021 LATEX template

2

constrained optimization problem:

min
x′

d (x,x′)

s. t. max
i ̸=y

f i
θ(x

′) ≥ fy
θ (x

′) , x′ ∈ [0, 1]n
(2)

where y is the true class of x, and is first introduced
in [1], earlier than Form. (1). Early works assume
the distance metric d in both Form. (1) and (2) to
be the ℓp norm ball, where p = 1, 2,∞ are popular
choices [2, 11]. Recent works have also modeled
nontrivial transformations using metrics other than
ℓp norms [3–9, 12], to capture visually realistic
perturbations and generate adversaries with more
varieties.

Form. (1) is usually associated with an attacker
in the adversarial setup, where a hacker takes
advantage of Form. (1) to make fθ misclassify x,
as solutions to Form. (1) lead to worst-case pertur-
bations to fool fθ. Thus, it is popular to perform
robust evaluation (RE) via Form. (1)—generating
perturbations over a evaluation dataset and report-
ing the classification accuracy over these generated
perturbations (robust accuracy). Form. (1) also nat-
urally motivates adversarial training (AT) in the
following min-max formulation [2, 10, 11]:

min
θ

E(x,y)∼D max
x′∈∆(x)

ℓ (y, fθ(x
′)) (3)

where ∆(x) = {x′ ∈ [0, 1]n : d(x,x′) ≤ ε}, in
contrast to the classical goal of supervised learning:

min
θ

E(x,y)∼D ℓ (y, fθ(x)) (4)

as a disciplined framework to achieve adversar-
ial robustness (AR). Form. (2) is also a popular
choice of RE in terms of providing robust accu-
racy1 [14–16], as any solution will produce a x′

that causes fθ to mis-classify its label. More impor-
tantly, solutions to Form. (2) also return robustness
radius corresponding to each sample. This makes
Form. (2) suitable in testing the limitations of a
model—less robust samples can be identified by
smaller robustness radius, but is often overlooked
in existing literatures.

Despite the popularity of Form. (1) and (2),
solving them is not easy. For Form. (1), the objec-
tive is non-concave for typical choices of loss ℓ and

1One can also perform AT using Form. (2) via bi-level
optimization; see, e.g., [13].

model fθ; for non-ℓp metrics d, x′ often belongs to
a complicated non-convex set. In practice, there are
two major lines of algorithms: 1) direct numeri-
cal maximization that takes (sub-)differentiable
ℓ and fθ, and tries direct maximization, e.g., using
gradient-based methods [11, 15]. This often only
produces a suboptimal solution and can lead to
overoptimistic RE. 2) upper-bound maximiza-
tion that constructs tractable upper bounds for
the margin loss:

ℓML = max
i ̸=y

f i
θ(x

′)− fy
θ (x

′) (5)

and then optimizes against the upper bounds [17–
22]. Improving the tightness of the upper bound
while maintaining tractability remains an active
area of research. It is also worth mentioning that
since ℓML ≥ 0 implies an attack success, fam-
ily 2) can also be used to RE by providing an
underestimate of robust accuracy as well [17–27].
For Form. (2), for small-scale, restricted fθ and
selected d, the problem can be solved exactly by
mixed integer programming [28–30]. For general
fθ and selected d, lower bounds of the robustness
radius can be computed [31–34]. But in practice,
Form. (2) is heuristically solved by gradient-based
methods or iterative linearization [1, 14, 16, 35–38]
to retain an upper bound of the robustness radius,
see Section 2.

Although performing RE with numerical meth-
ods is widely used in practice [39], there are
two major limitations in the existing evaluation
methods:

• Lack of reliability: existing numerical meth-
ods typically do not assess the solution quality
and there are little access to the trustwor-
thiness of the solution found. Fig. 1 shows
that the default iteration budget used in
the RE package AutoAttack mostly leads to
pre-mature termination of the optimization
process, and it is indeed tricky to set the ter-
mination iterations as they vary from sample
to sample.

• Lack of generality: existing projected gradi-
ent methods are mainly applied to problems
where d is ℓ1, ℓ2 or ℓ∞ norm, while meth-
ods to deal with other distance metric d are
lacking. In fact, the popular RE benchmark

Springer Nature 2021 LATEX template

3

CIFAR-10 ImageNet

APGD - ℓ2 APGD - ℓ∞ APGD - ℓ2 APGD - ℓ∞

FAB - ℓ2 FAB - ℓ∞ FAB - ℓ2 FAB - ℓ∞
Fig. 1: Histogram of iterations where APGD (to solve Form. (1)) and FAB (to solve Form. (2)) in
AutoAttack find the best objective values (blue bars) for 100 sample images. The dashed orange line
in each figure depicts the termination iteration. We set the termination iteration to be 500 for Cifar-10
images and 1000 for ImageNet images. In each plot, we can conclude that 1) the iterations where the
best results are achieved by APGD and FAB vary from sample to sample; 2) the best results are achieved
mostly after the default maximal iteration used in AutoAttack; 3) the maximal iterations we set in these
experiments are probably still not sufficient for most samples.

CIFAR-10 ImageNet

(a) PWCF - ℓ2 (b) PWCF - ℓ∞ (c) PWCF - ℓ2 (d) PWCF - ℓ∞

(e) PWCF - ℓ2 (f) PWCF - ℓ∞ (g) PWCF - ℓ2 (h) PWCF - ℓ∞
Fig. 2: Histogram of iterations where PWCF terminates in solving Form. (1)—(a)-(d), and Form. (2)—
(e)-(h). We also set a maximal termination iteration 400 for ((a)-(d)) and 4000 for ((e)-(h)) in this test.

robustbench [39] only has ℓ2 and ℓ∞ leader-
boards; and the most studied adversarial
attack model is the ℓ∞ attack [40].

Both limitations are important to address, as relia-
bility relates to how much we can trust the results,
and generality determines the usage—to test the
robustness of the models with more varieties of
attacks, such as real-world-like perturbations, there

is a need for solvers to Form. (1) and (2) that can
handle more varieties of distance metrics d.

Our contributions In this paper, we focus
on numerical optimization of Form. (1) and (2)2.

2Both formulations have their targeted versions: e.g., replac-
ing max fi

θ(x
′) by fi

θ(x
′) in Form. (2), and similarly in Form. (1)

using margin loss Eq. (5), which are indeed simpler versions

Springer Nature 2021 LATEX template

4

We first provide a general solver that can handle
any piece-wise differentiable distance metric d, and
has a principled stopping criterion to assess the
solution quality:

1. We adapt the constrained optimization
solver PyGRANSO [41, 42] With Constraint-
Folding (PWCF), which is crucial for boosting
the speed and solution quality of PyGRANSO—
see Section 3.1.

2. As PyGRANSO is equipped with a rigorous line-
search rule and stopping criterion, PWCF
terminates the optimization by assessing the
constraint violations and stationarity, thus
providing solution quality guarantees—see
Section 3.3.

3. We show that PWCF can not only perform
comparably to the state-of-the-art (SOTA)
RE packages on ℓ1, ℓ2, and ℓ∞ attacks, e.g.,
AutoAttack [15], serving as a reliable comple-
ment to them, but also handle general distance
metric d other than the popular but limited
ℓ1, ℓ2, and ℓ∞—beyond the reach of existing
numerical methods, see Section 4.

Then we compare the solutions to Form. (1) and (2)
from different solvers and discuss the implications:

1. Different combinations of distance metric d,
loss ℓ and optimization solver used in solv-
ing Form. (1) and (2) can induce different
sparsity patterns. In terms of numerical RE,
combining solutions with different patterns
is complementary; any evaluation based on a
small set of algorithms may not be sufficient,
see Section 5 and Section 6.1.

2. The robust accuracy used in RE via solving
Form. (1) may be a bad robustness metric.
Instead, performing RE via Form. (2) can be
more beneficial, see Section 7.1.

3. Due to the pattern difference in solving
Form. (1) with numerical methods, the com-
mon practice of adversarial training via
Form. (3) may not achieve adversarial robust-
ness, see Section 7.2.

of the untargetted Form. (2) and Form. (1). Thus, we will only
focus on the untargetted formulations in this paper.

2 Technical background

2.1 Numerical maximization of
Form. (1)

Form. (1) is often solved by the projected gradient
descent (PGD)3 method. The basic update reads

x′
new = P∆(x) (x

′
old + t∇ℓ(x′

old)) (6)

where P∆(x) is the projection operator onto the
feasible set ∆(x). When ∆(x) = {x′ ∈ [0, 1]n :
∥x′ − x∥p ≤ ε} with p = 1,∞, P∆(x) takes simple
forms. For p = 2, sequential projection onto the box
first and then the norm ball at least finds a feasible
solution (see our clarification of these projections in
Section A). Therefore, PGD is viable for these cases.
For other choices of p and general non-ℓp metrics
d where analytical projected gradients are hard to
derive, existing algorithms do not apply. For practi-
cal PGD methods, previous works have shown that
the solution quality is sensitive to hyperparame-
ters tuning, e.g., step-size schedule and iteration
budget [15, 43, 44]. The SOTA PGD variants,
APGD-CE and APGD-DLR, try to make the tun-
ing process automatic by combining a heuristic
adaptive step-size schedule and momentum accel-
eration under fixed iteration budget [15]—both
are built into the popular AutoAttack package4.
Another non-PGD method, Square Attack [45],
which is based on gradient-free random search, is
also included in AutoAttack, but the performance
is not as effective as APGDs.

2.2 Numerical minimization of
Form. (2)

The difficulty in optimizing Form. (2) lies in
dealing with the highly nonlinear constraint
maxi ̸=y f

i
θ(x

′) ≥ fy
θ (x

′). There are two lines of
ideas to circumvent it: 1) penalty methods turn
the constraint into a penalty term added to the
objective [1, 37]. The resulting box-constrained
problems can then be handled by classical opti-
mization methods, such as L-BFGS [46] or PGD.
But penalty methods do not guarantee to return
feasible solutions to the original problem; 2) iter-
ative linearization linearizes the constraint at

3It should be “ascent" instead of “descent" due to the
maximization, but we follow the AutoAttack package.

4Package website: https://github.com/fra31/auto-attack.

https://github.com/fra31/auto-attack

Springer Nature 2021 LATEX template

5

each step, leading to simple solutions to the projec-
tion (onto the intersection of the linearized decision
boundary and the [0, 1]n box) for particular choices
of d (i.e.,ℓ1, ℓ2 and ℓ∞), see, e.g., [14, 35]. However,
for general metric d, this projection does not have
closed form solutions. In [16, 38], the problem is
reformulated as:

min
x′,t

t

s. t. max
i ̸=y

f i
θ(x

′) ≥ fy
θ (x

′)

d(x, x′) ≤ t , x′ ∈ [0, 1]n

(7)

so that the perturbation (determined by x′)
and the radius (determined by t) are decoupled.
Then penalty methods and iterative linearization
are combined to solve Form. (7). The fast adap-
tive boundary (FAB) attack [14] included in the
AutoAttack package belongs to family 2).

2.3 PyGRANSO for constrained
optimization

In principle, as instances of general nonlinear
optimization (NLOPT) problems [46, 47]

min
x

g(x)

s. t. ci(x) ≤ 0, ∀ i ∈ I
hj(x) = 0, ∀ j ∈ E

(8)

where g(·) is the objective function; ci’s and hj ’s
are inequality and equality constraints, respectively.
Form. (1) and (2) can be solved by general-purpose
NLOPT solvers such as Knitro [48], IPOPT [49],
and GENO [50, 51]. However, there are two caveats:
1) these solvers only handle continuously differ-
entiable g, ci’s and hj ’s, while non-differentiable
ones are common in Form. (1) and (2), e.g., when
d is ℓ∞ distance, or fθ uses non-differentiable acti-
vations; 2) they require analytical gradients of g,
ci’s and hj ’s, which are impractical to derive when
DNN models fθ are involved.

PyGRANSO [41, 42]5 is a recent PyTorch-port of
the powerful MATLAB package GRANSO [41] that
can handle general NLOPT problems of Form. (8)
with non-differentiable g, ci’s, and hj ’s. It only
requires them to be almost everywhere differen-
tiable [52–54], which covers a much wider range

5Package webpage: https://ncvx.org/

than almost all forms of Form. (1) and (2) pro-
posed so far in the literature. GRANSO employs a
quasi-Newton sequential quadratic programming
(BFGS-SQP) to solve Form. (8), and features a rig-
orous adaptive step-size rule via line search and
a principled stopping criterion inspired by gradi-
ent sampling [55]. See a sketch of the algorithm
in Section B and [41] for details. PyGRANSO equips
GRANSO with auto-differentiation and GPU comput-
ing powered by PyTorch—crucial for deep learning
problems. The stopping criterion is controlled by
tolerance level of the total constraint violation
and stationarity—the former determines how strict
the constraints are enforced, while the latter mea-
sures how ‘flat’ the local optimization landscape
is. Thus, the solution quality can be transparently
controlled.

2.4 Min-max optimization for
practical adversarial training

For a finite training set, Form. (3) becomes

min
θ

1

N

N∑
i=1

max
x′

i∈∆(xi)
ℓ (yi, fθ(x

′
i)) (9)

⇐⇒min
θ

max
x′

i∈∆(xi) ∀i

1

N

N∑
i=1

ℓ (yi, fθ(x
′
i)) (10)

i.e., in the form of

min
θ

max
x′

i∈∆(xi) ,∀i
ϕ(θ, {xi}) (11)

Form. (9) is often solved by iterating between the
(separable) inner maximization and a subgradient
update for the outer minimization. The latter takes
a subgradient of h(θ) .

= maxx′
i∈∆(xi) ∀i ϕ(θ, {xi})

from the subdifferential ∂θϕ(θ, {x∗
i }) (x∗

i are max-
imizers for the inner maximization), justified by
the celebrated Danskin’s theorem [56–58]. However,
if the numerical solutions to the inner maximiza-
tion are substantially suboptimal6, the subgradient
we take can be misleading—see our discussion in
Section C. In practice, people typically do not
strive to find the optimal solution to the inner

6[11] argues using numerical evidence that the maximization
landscapes are typically benign in practice and gradient-based
methods often find solutions with function values close to the
global optimal.

https://ncvx.org/

Springer Nature 2021 LATEX template

6

maximization strictly, but early stop the optimiza-
tion process within a few iterations, or when a
successful ‘attack’ sample is found.

3 A generic solver for Form. (1)
and (2): PyGRANSO With
Constraint-Folding (PWCF)

Although PyGRANSO can serve as a promising solver
for Form. (1) and (2), naive deployment to solve
the above two formulations can suffer from slow
convergence or low-quality solutions due to numer-
ical issues. Thus, we introduce PyGRANSO With
Constraint-Folding (PWCF)—essential to sub-
stantially speed up the optimization process and
improve the solution quality of PyGRANSO.

3.1 General techniques
The following techniques are developed from solv-
ing Form. (1) and (2), but are conceptually general
and should be considered for general NLOPT
problems when using PyGRANSO.

3.1.1 Reduce the number of constraints:
constraint-folding

The natural image constraint x′ ∈ [0, 1]n is a set
of n box constraints. The reformulation described
in Section 3.2.1 and Section 3.2.2 will introduce
another Θ(n) box constraints. Although all these
are simple linear constraints, the Θ(n)-growth
is daunting: for natural images, n is the num-
ber of pixels that can easily get into hundreds
of thousands. Typical NLOPT problems become
much more difficult when the number of con-
straints grows, e.g., leading to slow convergence
for numerical algorithms.

To combat this, we introduce constraint-folding
to reduce the number of constraints into a single
one. To see how this is possible, first note that
any equality constraint h(x) = 0 or inequality
constraint c(x) ≤ 0 can be reformulated as

h(x) = 0 ⇐⇒ |h(x)| ≤ 0 ,
c(x) ≤ 0 ⇐⇒ max{c(x), 0} ≤ 0

(12)

We can fold them together as

F(|h(x)|,max{c(x), 0}) ≤ 0 (13)

Runtime: 4662.2 s Runtime: 1.1 s

(a) n box constraints (b) folded constraints
Fig. 3: Examples of the PyGRANSO optimization
trajectory to solve Form. (1) with ℓ2 (ε = 0.5)
as d, and a clipped margin loss ℓ (described in
Section 3.2.4) on a CIFAR-10 image. (a) the con-
straint is in the original form of n linear box
constraints x′ ∈ [0, 1]n; (b) the box constraints
are folded by ℓ2 norm into a single one. The hori-
zontal axis denotes the iteration number. Here an
optimal solution is found when the objective value
reaches −0.01 and the constraint violation reaches
0. Although it takes PyGRANSO similar number of
iterations to reach an optimal solution for both
cases, it consumes significantly less time with the
constraint-folding technique than without.

where F : R2
+ 7→ R+ (R+

.
= {t : t ≥ 0}) can be

any function satisfying F(z) = 0 =⇒ z = 0, e.g.,
any ℓp (p ≥ 1) norm.

It is easy to verify the equivalence of Eq. (13)
and the original constraints in Eq. (12). The fold-
ing technique can be used to a subset or all
constraints; or to group and fold the constraints
according to their physical meanings, respectively.
We note that folding or aggregating constraints
is not a new idea and has been popular in engi-
neering design, e.g., [59] uses ℓ∞ folding and its
log-sum-exponential approximation to deal with
numerous design constraints, also see [60–63]. How-
ever, applying folding into NLOPT problems in
machine learning seems rare, potentially because
producing non-differentiable constraint(s) due to
the folding seems counterproductive.

In our experiments, we always use F = ∥·∥2
for constraint folding. Fig. 3 depicts the benefit of
the constraint folding technique by an example of
Form. (1), where time efficiency is greatly improved
and the solution quality is maintained. Note that
PWCF minimize the negative loss (−ℓ) when solv-
ing Form. (1) and thus the objective value curves
are descending. Constraint-folding can significantly
improve the optimization performance due to the
fact that: 1) when forming the penalty function

Springer Nature 2021 LATEX template

7

Algorithm 1 Selection of x∗
r and s∗r in the two-

stage process

Require: Intermediate optimization results xi
r

and corresponding solver states sir.
1: if Any xi

r is feasible in Form. (8) then
2: Set x∗

r to be the xi
r with the least objective

value.
3: else
4: Set x∗

r to be the xi
r with the least constraint

violation.
5: end if
6: Set s∗r corresponds to x∗

r .
7: return x∗

r and s∗r .

with a large amount of constraints in PyGRANSO,
the searching directions are biased towards staying
feasible, thus slowing down the progress towards
minimizing the objective function; 2) the two QPs
((B12) and (B16)) become very expensive when the
number of constraints p is large. The number of
optimization variables in both QPs is proportional
to p, and thus reducing p (by constraint-folding)
can significantly reduce the cost per iteration.

3.1.2 Two stage optimization

Numerical methods can be trapped at poor local
minima for highly nonlinear problems. Running
the optimization algorithm multiple times with
different random initialization points seems to be
an effective way to counter, and thus improve
the final solution quality. E.g., each method in
AutoAttack [15] has 5 random restarts by default.
We apply the same technique for PWCF, but in a
two-stage fashion:

1. Stage 1: Optimize the problems in PWCF
form with nk different random initializations
for nr iterations; collect the solver state sir

7

and the final solution xi
r of each run, where

i = 1, · · · , nk and r = 1, · · · , nr. Deter-
mine the best intermediate result x∗

r and
corresponding state s∗r following Algorithm 1.

2. Stage 2: Continue optimization process with
x∗
r and s∗r until the stopping criterion is met.

While nk and nr are empirically picked, the pur-
pose is to improve the time efficiency of PWCF by
not wasting time searching in sub-optimal plateaus:

7The solver state sir will be the inverse Hessian matrix if
using BFGS algorithm, or the latest updates if using L-BFGS
algorithm in PWCF.

Runtime: 932.3 Runtime: 1.2

(a) original ℓ∞ (b) reformulated ℓ∞

Fig. 4: Examples of the PyGRANSO optimization tra-
jectory to solve Form. (1) with ℓ∞ (ε = 0.03), and
a clipped margin loss ℓ (described in Section 3.2.4)
on a CIFAR-10 image. (a) uses the original form
∥x′ − x∥∞ ≤ ε as the constraint; (b) uses the
reformulated and folded constraint. The horizontal
axis denotes the iteration number. In this example,
optimization terminates when constraint violation
turns 0. After reformulate and fold the ℓ∞ con-
straints, the optimization process runs much faster
in terms of both time and iteration needed.

when the number of iteration is large, PWCF tends
to refine the solution within a local plateau due
to the line-search update rule—see (a) and (b) in
Fig. 6 later for an example, where the objective
value decreases much more slowly in the later stage
than in the early 20 iterations. For the experiments
in Section 4, we use nk = 20 and nr = 400 for
Form. (1) experiments and nk = 50 and nr = 4000
for Form. (2) experiments. These numbers are set
on the conservative side to ensure that PWCF
returns solutions with sufficient quality.

3.2 Techniques specific to Form. (1)
and (2)

The following techniques are developed to improve
the performance of solving Form. (1) and (2).
According to our experiments, they should be
applied whenever encountered for these two prob-
lems.

3.2.1 Avoid sparse subgradients:
reformulating ℓ∞ constraints

The BFGS-SQP algorithm inside PyGRANSO relies
on the subgradients of the objective and the
constraint functions to approximate the (inverse)
Hessian and to compute the search direction.
Hence, when the subgradients are sparse, updating
all optimization variables may take many iterations,

Springer Nature 2021 LATEX template

8

Fig. 5: Minimal radius find by solving Form. (2)
with ℓ1 norm as constraint (original form) and
solving Form. (15) (reformulated version) on 18
CIFAR-10 images. The horizontal axis denotes the
sample index. All solutions are feasible, and thus
the lower the radius, the better the solution quality.

leading to slow convergence. For the ℓ∞ metric,

∂z∥z∥∞ = conv{ek sign(zk) : zk = ∥z∥∞ ∀ k}

where ek’s are the standard basis vectors, conv
denotes the convex hull and sign(zk) = zk/|zk| if
zk ̸= 0, else [−1, 1]. The subgradient thus contains
no more than nk = |{k : zk = ∥z∥∞}| nonzeros
and is thus sparse when nk is small. To avoid this
issue, we propose the following reformulation which
should be applied whenever ℓ∞ is present in the
constraints using PyGRANSO:

∥x− x′∥∞ ≤ ε ⇐⇒ −ε1 ≤ x− x′ ≤ ε1 (14)

where 1 ∈ Rn is the all-one vector. Then, the
resulted n box constraints can be folded into 1
single constraint as introduced in Section 3.1.1 to
improve its efficiency. By reformulation and fold-
ing, PWCF can greatly accelerate the optmization
process, see Fig. 4.

3.2.2 Decouple the update direction
and the radius: reformulating ℓ1
and ℓ∞ objectives

It is not surprising that to solve Form. (2) with ℓ∞
as d, it is more effective to solve the reformulated
version as Form. (7)—the reason is to avoid sparse
subgradients, similar to Section 3.2.1. We also find
that solving the reformulated version below is more

(a) min t (b) min t ·
√
n

Fig. 6: Examples of PWCF optimization trajec-
tory to solve Form. (7) with ℓ∞ norm as d on a
Cifar10 image (a) without rescaling and (b) with
rescaling. The horizontal axis is the number of iter-
ations. The objective value shown in (b) is scaled
back to the original value t for fair comparisons
with (a). In Figure (a), the optimization termi-
nates around iteration 60 due to line-search failure
(indicating bad numeric conditions met, instead
of terminating by the stopping criterion), and the
final solution has a much higher (worse) objective
value than (b). Also note in both (a) and (b),
PWCF makes the most progress within a few iter-
ations (< 20), then refines the objective value with
minor improvements afterwards.

effective when d in Form. (2) is the ℓ1 norm:

min
x ,t

1 · t

s. t. max
i ̸=y

f i
θ(x

′) ≥ fy
θ (x

′)

|xi − x′
i| ≤ ti , i = 1, 2, · · · , n

x′ ∈ [0, 1]n

(15)

The newly introduced box constraint |xi − x′
i| ≤ ti

is then folded by ℓ2 norm into a single constraint as
Section 3.1.1. Fig. 5 compares the minimal radius
found by solving Form. (2) and Form. (15) with ℓ1
norm on 18 CIFAR-10 images against the same
DNN model. Solving Form. (15) clearly outper-
forms solving Form. (2) as it finds much smaller
radius in all but one samples.

3.2.3 Numerical re-scaling to balance
objective and constraints

The step-size rule in PyGRANSO (see line 5 in
Algorithm 3, Section B) can only downplay the
contribution from the objective and gradually push
the solution towards feasibility. Thus, if the scale
of the objective value is too small compared to
the constraint violation initially, numeric problems

Springer Nature 2021 LATEX template

9

loss gradient magnitude

(a) (b)

(c) (d)
Fig. 7: Visualizations of the loss clipping. (a):
cross-entropy loss and its clipped version. The
depicted clipping threshold is used in CIFAR-10
experiments. (b): the gradient magnitude of (a).
The horizontal axes of (a) and (b) are the network
output value fy

θ (x
′) after the softmax regulariza-

tion following the common practice. (c): margin
loss and its clipped version. (d): the gradient mag-
nitude of (c). The horizontal axes of (c) and (d)
are the value maxi̸=y f

i
θ(x

′) − fy
θ (x

′) before the
softmax regularization as is defined by the raw
decision boundary in Eq. (5).

arise—PyGRANSO will try hard to combat the viola-
tion, while the objective hardly decrease. This only
happens when solving Form. (7) for the ℓ∞ case,
where the radius t in the objective is a scalar of
10−2 while the folded constraints are the ℓ2 norm
of a n−dimensional vector with an order of 102
if random initialization is used. To combat this,
we simply re-balance the objective by a constant
scalar—we minimize t ·

√
n instead of t, and PWCF

can perform as effectively as in other cases, see an
example in Fig. 6.

3.2.4 Loss clipping in solving Form. (1)
with PWCF to generate attack

When solving Form. (1) with the popular cross-
entropy (CE) and margin losses (both unbounded,
see Fig. 7), the objective value can easily dominate
the constraint violation during the maximization
process. Since PyGRANSO tries to balance the objec-
tive value and constraint violation when making
progress, it can persistently prioritize optimizing
the objective over constraint satisfaction, resulting

(a) CE (b) CE-clip

(c) margin (d) margin-clip
Fig. 8: PWCF optimization trajectory comparison
among using cross-entropy (CE) loss, margin loss
and their clipped versions in solving Form. (1) with
a CIFAR-10 image. The horizontal axis denotes the
number of iterations. For both CE and margin loss
without clipping ((a) and (c)), PWCF progresses
slowly towards feasibility (dashed orange curve),
while with clipping ((b) and (d)), PWCF finds
an optimal and feasible solution within only a few
iterations.

in slow progress in finding a feasible solution. To
solve this numerical difficulty, we propose using
the clipped margin loss ℓML with maximum value
0.01, as any ℓML ≥ 0 indicates a successful attack.
For the same reason, we use clipped CE loss with
maximal value at 2.4 for CIFAR-10 dataset and
4.7 for ImageNet-100 dataset in PWCF. The CE
threshold is justified, as the attack success must
have happened when the true logit output less
than 1/K (after softmax normalization is applied),
where K is the number of classes. The correspond-
ing critical value is − log 1/K—when K = 10 (the
number of total classes for CIFAR-10 dataset), this
value is 2.4, and when K = 100 (for ImageNet-
100 dataset), this value is 4.605. Loss clipping
significantly speeds up the optimization process in
solving Form. (1), see an example in Fig. 8.

3.3 Summary of PWCF to solve
Form. (1) and Form. (2)

We here summarize PWCF to solve Form. (1) and
(2) in Algorithm 2. Then we provide information
on PWCF’s reliability and running speed when
used to solve these two RE problems.

Springer Nature 2021 LATEX template

10
Form. (1) Form. (2)

(a) APGD (b) PWCF - margin loss (c) FAB (d) PWCF
Fig. 9: Examples of optimization trajectories of APGD, FAB and PWCF solving Form. (1) and (2) of
a CIFAR-10 Image. The blue curves in (a)-(d) denote the objective value. In (a) and (c), the dashed
orange lines are the default termination iteration used in current RE pracice [39] and the dashed red
lines are the iteration where the actual best feasible solution found. In (b) and (d), the dashed orange
lines denote the constraint violation value of PWCF and the red lines represent the stationarity. In this
example, we set the stopping stationarity value to be 10−8 (much stricter than necessary), and thus the
optimization does not stop within nr. We can observe from (b) and (d) that PWCF optimization process
is stable around iteration 20 and only improves subtly afterwords.

CIFAR-10 ImageNet

(a) PWCF - ℓ2 (b) PWCF - ℓ∞ (c) PWCF - ℓ2 (d) PWCF - ℓ∞

(e) PWCF - ℓ2 (f) PWCF - ℓ∞ (g) PWCF - ℓ2 (h) PWCF - ℓ∞
Fig. 10: Histogram of optimization time for PWCF to solve Form. (1): (a)-(d), and Form. (2): (e)-(h)
with the proposed Algorithm 2.

Table 1: Statistical summary of Fig. 10.
Time (s) Min Max Median

(a) 0.269 50.02 12.37
(b) 0.253 93.62 17.60
(c) 0.377 193.2 36.26
(d) 1.081 131.9 115.5

(e) 5.778 134.5 21.58
(f) 91.67 369.2 167.5
(g) 2.965 354.8 112.9
(h) 121.5 317.0 161.7

3.3.1 Reliability

As mentioned in Section 1, popular numerical
methods terminate with empirically set iteration

budgets which can lead to early stopping at sub-
optimal points, see Fig. 1. We observe that the
default iteration budget used in the AutoAttack
package does terminate the optimization process
early. On the contrary, PWCF automatically ter-
minates when the stopping criterion is met: Fig. 2
shows the termination iterations for PWCF in
solving Form. (1) and (2) with both constraint
violation and stationarity tolerance to be 10−2.
Fig. 9 depicts examples of the optimization tra-
jectories of APGD, FAB and PWCF, which again
confirms the reliable termination of PWCF. Note
that Fig. 9 also suggests that even for some sam-
ples, PWCF terminates by the maximal iterations
set as shown in Fig. 2, the optimizations are also

Springer Nature 2021 LATEX template

11

Table 2: Comparison between PWCF and SOTA attack methods on ℓ1, ℓ2 and ℓ∞ attacks
(Form. (1)). Attack(ε) denotes the type of adversarial attacks and their ε’s. For each method, we
report the models’ clean and robust accuracy (numbers are in (%))—lower robust accuracy indicates
more effective attacks. We tested APGD and PWCF using both cross-entropy (CE) and margin (M) loss.
CE+M column shows the robust accuracy achieved by combining the adversarial samples found by using
CE and M; APGD+PWCF shows the robust accuracy achieved by combining both APGD and PWCF
using both CE and M loss. We highlight the best performance achieved by each individual solver with
underlines, and highlight the performance achieved by the combination of all solvers and losses in bold.

APGD PWCF(ours) Square APGD+

Dataset Attack(ε) Clean CE M CE+M CE M CE+M M PWCF

CIFAR10 ℓ1(12) 73.29 0.97 0.00 0.00 17.93 0.01 0.01 2.28 0.00

ℓ2(0.5) 94.61 81.81 81.06 80.92 81.99 81.02 80.87 87.9 80.77

ℓ∞(0.03) 90.81 69.44 67.71 67.33 88.71 68.20 68.17 71.6 67.26

ImageNet100 ℓ2(4.7) 75.04 42.44 44.06 40.86 42.50 43.52 40.60 63.1 40.46

ℓ∞(0.016) 75.04 46.78 47.54 45.20 73.92 47.72 47.72 59.9 45.12

Algorithm 2 PWCF to solve Form. (1) and (2)

Require: Original input x, a pretrained network
fθ and a distance metric d.

Require: Loss ℓ if solving Form. (1).
1: if Solving Form. (2) and d is either ℓ1 or ℓ∞

then
2: Reformualte the problem as Section 3.2.2

and Section 3.2.3.
3: end if
4: if Solving Form. (1) then
5: Clip loss function ℓ as Section 3.2.4.
6: end if
7: if Any constraint takes ℓ∞ norm then
8: Reformulate the constraint as Section 3.2.1.
9: end if

10: Perform constraint folding as Section 3.1.1.
11: Perform the two stage optimization as

Section 3.1.2.
12: return x′

close to convergence and the returned result is of
good quality.

3.3.2 Running cost

We here provide statistical summaries of the run-
ning time of PWCF in solving the RE problems
Form. (1) and (2) for reference. Our computation

environment uses a AMD Milan 7763 64-core pro-
cessor and a NVIDIA A100 GPU, connected with
Mellanox HDR-100 InfiniBand network. Fig. 10
shows the running time of the experiment pre-
sented in Fig. 2, and the corresponding min, max,
and median values are summarized in Table 1.

4 Performance of PWCF on
RE problems

4.1 Compare PWCF with existing
ℓ1, ℓ2 and ℓ∞ solutions

We first compare PWCF with the existing SOTA
numeric algorithms in solving Form. (1) and (2)
with ℓ1, ℓ2 and ℓ∞ norm as d to verify the
effectiveness of our PWCF.

4.1.1 PWCF offers competitive and
complementary performance in
solving Form. (1)

We select some recent and publicly available adver-
sarially trained models by ℓ1, ℓ2, and ℓ∞ attacks on

Springer Nature 2021 LATEX template

12

Table 3: Comparison between PWCF(ours) and FAB in solving Form. (2) with ℓ1, ℓ2 and
ℓ∞ norm as the metric d. We experimented with 88 fixed images from CIFAR-10 and ImageNet-100
dataset with each d. We report the Mean, Median and standard deviation (STD) of the minimal
perturbation radius—lower radius means more effective minimization. The columns under Difference
are calculated based on the sample-wise radius difference (PWCF radius minus FAB), where Mean and
Median ≤ 0 indicates PWCF performs better than FAB on average.

FAB PWCF (ours) Difference

Dataset Metric d Mean Median STD Mean Median STD Mean Median STD

CIFAR10 ℓ1 13.92 10.50 12.63 12.02 7.29 11.46 -1.89 -0.81 5.24

ℓ2 1.02 0.90 0.71 1.00 0.88 0.69 -0.019 -0.015 0.250

ℓ∞ 0.0298 0.0245 0.0220 0.0298 0.0252 0.0224 0.0008 -0.00008 0.007

ImageNet100 ℓ1 435.4 400.6 303.9 408.1 390.6 284.7 -27.31 -13.46 70.55

ℓ2 6.75 6.81 3.82 6.71 6.88 3.76 -0.042 -0.035 0.758

ℓ∞ 0.028 0.028 0.016 0.029 0.029 0.016 0.0009 0.00002 0.002

CIFAR-10 - ℓ1 CIFAR-10 - ℓ2 CIFAR-10 - ℓ∞

ImageNet-100 - ℓ1 ImageNet-100 - ℓ2 ImageNet-100 - ℓ∞
Fig. 11: Comparison of the minimum radius for every tested sample between PWCF(ours) and FAB
(details of Table 3). 1st row: CIFAR-10; 2nd row: ImageNet-100. In each subfigure, the vertical axis depicts
the radius, and the horizontal axis is the image indices.

CIFAR-1089, and by perceptual attack10 on Ima-
geNet [12]11, and compare the robust accuracy by

8For ℓ1 experiment, we pick the model ‘L1.pt’from https:
//github.com/locuslab/robust_union/tree/master/CIFAR10,
which is adversarially trained by ℓ1-attack.

9For ℓ2 ad ℓ∞ experiments, We pick the models ‘L2-Extra.pt’
and ‘Linf-Extra.pt’ from https://github.com/deepmind/

deepmind-research/tree/master/adversarial_robustness, with
the WRN-70-16 network architecuture.

10See Section 4.2 for details.
11We use the ‘pat_alexnet_0.5.pt’ from https://github.com/

cassidylaidlaw/perceptual-advex, where the author tested and
showed its ℓ2- and ℓ∞- robustness in the original work.

https://github.com/locuslab/robust_union/tree/master/CIFAR10
https://github.com/locuslab/robust_union/tree/master/CIFAR10
https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
https://github.com/cassidylaidlaw/perceptual-advex
https://github.com/cassidylaidlaw/perceptual-advex

Springer Nature 2021 LATEX template

13

solving Form. (1) with PWCF and APGD12 meth-
ods from AutoAttack [15]. The bound ε are set to
follow the common practice of RE13.

From Table 2, we can conclude that 1) PWCF
performs strongly and comparably to APGD on
ℓ1, ℓ2 and ℓ∞ attacks, especially when using mar-
gin loss as the objective. The weak performance
of PWCF on ℓ1 and ℓ∞ attacks using CE loss
is likely due to the bad numerical scaling of the
loss itself: the gradient magnitude of CE grows
faster as maximization proceeds whereas we typi-
cally prefer a diminishing update step for better
numerical outcomes in optimization problems, see
Fig. 7 for a visualization of the losses. APGD [15]
has an explicit step-size rule different from the
vanilla PGD algorithms to boost the attack per-
formance under CE loss, while we did not perform
any special tuning for these cases. In contrast, the
gradient scale is always 1 using the margin loss.
2) Combining all successful attack samples found
by APGD or PWCF, using CE and margin loss as
the objective (column CE+M under APGD and
PWCF in Table 2) can reduce the robust accuracy
lower than the robust accuracy achieved by any
single attack, and combining all attack samples
found by APGD and PWCF using CE and mar-
gin loss (APGD+PWCF in Table 2) achieves the
lowest robust accuracy—PWCF and APGD are
complementary. Note that [44] also remarks that
the diversity of solutions matters much more than
the superiority of individual solvers, which is the
reason why AutoAttack includes Square Attack—
a zeroth-order black-box attack method that does
not perform strongly itself as shown in Table 2.
We will provide our extensive discussion on the
diversity below in Section 5, based on the solution
patterns found by different methods.

4.1.2 PWCF provides competitive
solutions to Form. (2)

We take adversarially trained models using per-
ceptual attacks on CIFAR-1014 and ImageNet15
and compare the performance by solving Form. (2)

12We implement the margin loss on top of AutoAttack.
13E.g., the ε of ℓ2 and ℓ∞ for CIFAR-10 are chosen from https:

//robustbench.github.io/; ℓ1 for CIFAR-10 is chosen from https:
//github.com/locuslab/robust_union; ℓ2 and ℓ∞ for ImageNet-
100 are from [12].

14We use model ‘pat_self_0.5.pt’ from https://github.com/
cassidylaidlaw/perceptual-advex.

15The same ImageNet model used in Table 2.

Fig. 12: Minimal robustness radius (vertical axis)
found by solving Form. (2) using PWCF on CIFAR-
10 images. The horizontal axis shows the image
indices. Red depicts the result for ℓ1.5 and blue for
ℓ8.

with PWCF and Fast Adaptive Boundary (FAB)
attack from AutoAttack package [14]. Table 3
and Fig. 11 summarize the minimal radius found
by each method. From the column Mean and
Median in Table 3, We conclude that: PWCF per-
forms on average 1) better than FAB in solving
Form. (2) with ℓ1 and ℓ2 as the distance metric d;
2) comparable to FAB in the ℓ∞ case.

4.2 PWCF can solve Form. (1) and
(2) with other general distance
metric d

As highlighted in Section 2, a major limitation of
the existing numerical methods is that they can
only handle limited choice of d. In contrast, PWCF
stands out as a convenient choice when d is other
general distance metrics. In what follows, we will
show this by using PWCF to solve Form. (1) and (2)
with ℓ1.5 and ℓ8 norm as distance metric d, as well
as d being the perceptual distance that involves
another DNN. To our best knowledge, there is no
prior work that is capable of handling general ℓp
distances; [12] has proposed 3 algorithms to solve
Form. (1) with the perceptual distance, and we will
compare our PWCF with them in the following
sections.

4.2.1 Solving Form. (2) with general d

We first apply PWCF to solve Form. (2) with ℓ1.5
and ℓ8 norms. Due to the lack of existing methods

https://robustbench.github.io/
https://robustbench.github.io/
https://github.com/locuslab/robust_union
https://github.com/locuslab/robust_union
https://github.com/cassidylaidlaw/perceptual-advex
https://github.com/cassidylaidlaw/perceptual-advex

Springer Nature 2021 LATEX template

14

Table 4: Performance comparison of different methods in solving Form. (1) with LPIPS distance on
ImageNet-100 evaluation set, using (clipped) cross-entropy and margin losses respectively. Viol. reports
the ratio of final solutions that violate the constraint; Att. Succ. is the ratio of all feasible and successful
attack samples divided by total number of samples—higher indicates more effective attack performance.

cross-entropy loss margin loss

Method Viol. (%) ↓ Att. Succ. (%) ↑ Viol. (%) ↓ Att. Succ. (%) ↑

Fast-LPA 73.8 3.54 41.6 56.8
LPA 0.00 80.5 0.00 97.0
PPGD 5.44 25.5 0.00 38.5

PWCF (ours) 0.62 93.6 0.00 100

Fig. 13: Minimal robustness radius (vertical axis)
found by solving Form. (2) using PWCF with
LPIPS distance on ImageNet-100 images. The hor-
izontal axis is the image index. The red dashed line
is the proposed bound ε used to solve Form. (1)
(perceptual attack) in [12], which is much larger
than each radii found by solving Form. (2) with
PWCF.

to compare, we directly show in Fig. 12 the minimal
radius16 found by PWCF on 100 CIFAR-10 images.

Similarly, there is no existing work considers
solving Form. (2) with d to be the perceptual metric
(LPIPS distance, which is first introduced in [64]):

d(x,x′)
.
= ∥ϕ(x)− ϕ(x′)∥2

where ϕ(x)
.
= [ĝ1(x), . . . , ĝL(x)]

(16)

where ĝ1(x), . . . , ĝL(x) are the vectorized inter-
mediate feature maps from pretrained DNNs.
Therefore, we also directly show in Fig. 13 the min-
imal radius found17 on 100 ImageNet images by
PWCF. Fig. 12 and Fig. 13 can show that PWCF

16Using the same adversarially pretrained model on CIFAR10
dataset as in Table 3

17Using the same adversarially pretrained model on ImageNet
dataset as in Table 3

solves Form. (2) with general distance metric d
with high quality.

4.2.2 Solving Form. (1) with ℓ1.5 and ℓ8
norms

Since no existing work has evaluated DNN’s robust-
ness under ℓ1.5 and ℓ8 attacks, we employ a
sample-adaptive ε to evaluate the performance of
PWCF: we use the same DNN model as Fig. 12 and
solve Form. (1) with 1.2 times the minimal robust
radius found in Fig. 12 for each sample. In our
experiment, PWCF achieves 8% robust accuracy
for ℓ1.5 and 1% for ℓ8 attack—both are close to 0%,
indicating PWCF’s effectiveness. It is worth men-
tioning again that we only intent to show the ability
of PWCF in handling general metric d in solving
Form. (1), but do not strive to set the most rea-
sonable perturbation radii, or to stress the attack
rates.

4.2.3 Solving Form. (1) with perceptual
metric

Table 4 summarizes the results of solving Form. (1)
with the perceptual distance as metric d on
ImageNet-100 dataset18, reporting both attack suc-
cess rate and the constraint violation rate. We
compare PWCF with the three methods proposed
in [12] on this problem: Perceptual Projected Gra-
dient Descent (PPGD) which is based on iterative
linearization and projection; Lagrangian Percep-
tual Attack (LPA) which is a penalty method with
iterative projections to the feasible set; and a vari-
ant of LPA without the projection (Fast-LPA). We

18Using the same adversarially pretrained model as in Fig. 13

Springer Nature 2021 LATEX template

15

Fig. 14: A ‘fish’ image example from the Imagenet-
100 evaluation dataset.

use ε = 0.5 as the original work [12]. According to
Fig. 13, the per-sample robustness radius are much
smaller than this ε—effective solvers are expected
to achieve 100% attack success rate with 0% viola-
tion rate. As in Table 4, PWCF with margin loss is
the only one that meets this standard and is thus
the clear winner.

5 Different combinations of ℓ,
d, and the solvers prefer
different patterns

In addition to the effectiveness of PWCF in solving
Form. (1) and (2), we also observe that using differ-
ent combinations of 1) distance metric d, 2) solver,
and 3) loss ℓ can lead to different sparsity patterns
in the final solutions, which we will demonstrate
in this section in the following two ways:

1. Visualization of an example image:
we take a ‘fish’ image (Fig. 14) from the
ImageNet-100 validation set, employ various
combinations of losses ℓ, distance metrics d
and solvers to Form. (1) and (2), and visualize
the final solutions in terms of the error image
x′ − x, and the histogram of the element-
wise error magnitude |x′ − x| to display the
pattern difference.

2. Statistic measure: we evaluate the the spar-
sity measure ∥x′ − x∥1/∥x′ − x∥2 to quantify
the statistical difference of the patterns—the
higher the value, the denser the pattern.
Fig. 17 and Fig. 18 display the histograms
of the sparsity measure over the error images
derived by solving Form. (1) and Form. (2)
respectively, where we randomly sample and
fix 500 ImageNet-100 images from the valida-
tion set for comparison.

Contrary to the ℓ1 norm that induces sparsity,
the ℓ∞ norm promotes dense perturbations with
comparable entry-wise magnitudes [65] and the ℓ2
norm promotes dense perturbations whose entries
follow power-law distributions. These varying spar-
sity patterns due to the norms are evident when
1) we compare the solutions in Fig. 15 and Fig. 16
under the same solver and loss but with differ-
ent norms, where the shape and value range of
the element-wise error magnitude histograms are
very different; 2) the sparsity measures display a
shift from left to right along the horizontal axis in
Fig. 17 and Fig. 18. In addition to the norms, we
also highlight other patterns induced by loss ℓ and
numerical solvers on top of these. Although we can-
not coherently explain how patterns are induced
by the complex interplay of the loss ℓ, distance
metric d, and the numerical solver, their presence
seems prevalent.
• Margin and cross-entropy losses have

different sparsity patterns in solving
Form. (1) Columns ‘cross-entropy’ and ‘mar-
gin’ of PWCF in Fig. 15 depict the pattern
difference with clear divergences in the error
histograms, e.g., the error values of PWCF-
ℓ2-margin are more concentrated towards 0
compared to PWCF-ℓ2-cross-entropy. The spar-
sity measures in Fig. 17 can further confirm the
existence of the difference due to the loss used in
solving Form. (1), both for APGD and PWCF.

• PyGRANSO solutions have more variety in
sparsity than APGD For the same ℓp and
loss used to solve Form. (1), Fig. 17 shows that
PWCF’s solutions have wider spread in the spar-
sity measure than APGD. The same observation
can be found in the min- form as well between
PWCF and FAB (Fig. 18 for Form. (2)).
Here we provide a conceptual explanation on

why this can happen. We take the ℓ1 distance
as an example, i.e., ∥x− x′∥1 ≤ ε and ignore
the box constraint. The ℓ1 norm is a famous
sparsity promoter in statistics and machine learn-
ing [66, 67], and hence the expected perturbation
δ = x′−x should be sparse. For simplicity, we take
the loss as 0/1 classification error ℓ(y, fθ(x

′)) =
1
{
maxi f

i
θ(x

′) ̸= y
}
. Note that ℓ is maximized

whenever f i
θ(x

′) > fy
θ (x

′) for a certain i ̸= y, so
that x′ crosses the local decision boundary between
the i-th and y-th classes—see Fig. 19. In prac-
tice, people set a substantially larger perturbation
radius than the robustness radius—which can be

Springer Nature 2021 LATEX template

16

APGD PWCF

cross-entropy margin cross-entropy margin

ℓ1

ℓ2

ℓ∞

Fig. 15: Visualization of the error images by solving Form. (1) with different losses (cross-entropy and
margin), different distance metrics d (ℓ1, ℓ2 and ℓ∞) and different solvers (APGD and PWCF). Within
each group by distance metric d, the top row shows of the error image x′ − x, which has been normalized
to range [0, 1] for better visualization purpose; the bottom row shows the histogram of the element-wise
error magnitude |x′ − x|, where the horizontal axis is the pixel value magnitude and the vertical axis is
the count.

Springer Nature 2021 LATEX template

17

ℓ1 ℓ2 ℓ∞ ℓ1 ℓ2 ℓ∞

FAB PWCF
Fig. 16: Visualizations of the error images (x′ − x, top row) and the histogram of element-wise error
magnitude |x′ − x|, bottom row) by solving Form. (2). Note that the comparison between FAB and PWCF
may not be as straightforward as Fig. 15 due to the fact that the radius ε found under Form. (2) are likely
different, resulting in different ranges of error magnitude values. However, the shape of the histograms can
still reveal the pattern differences.

cross-entropy margin cross-entropy margin

APGD PWCF
Fig. 17: Histograms of the sparsity measure ∥x′ − x∥1/∥x′ − x∥2 by solving Form. (1) with different
losses ℓ (cross-entropy and margin), different distance metrics d (ℓ1, ℓ2 and ℓ∞) and different methods
(APGD and PWCF). The larger the sparsity measure, the denser the pattern. For fair comparisons, we use
a non-adversarily trained model to generate the above samples so that each x′ is a successful attack. With
the same d and ℓ, the distribution difference of the sparsity measures between APGD and PWCF clearly
shows the solution pattern differences; the variance of the sparsity is noticeably larger in PWCF than in
APGD when the same d and ℓ is used.

Springer Nature 2021 LATEX template

18

ℓ1 ℓ2 ℓ∞ ℓ1 ℓ2 ℓ∞

FAB PWCF
Fig. 18: Histograms of the sparsity measure (∥x′ − x∥1/∥x′ − x∥2) by solving Form. (2) with different
distance metrics d (ℓ1, ℓ2 and ℓ∞). Under the same solver (FAB or PWCF), the shift of solution patterns
from sparse to dense due to d is obvious. Given the same d, the solutions of PWCF have more variety in
sparsity than the ones of FAB, showing the influence of the solver on the solution patterns.

Fig. 19: Geometry of Form. (1) with multiple
global maximizers. u and v are the basis vectors
of the 2-dimensional coordinate. Here we consider
the ℓ1-norm ball around x, and ignore the box
constraint x′ ∈ [0, 1]n that typically does not sub-
stantially change the geometry. Depending on the
loss ℓ used, part or the whole of the blue regions
becomes global or near-global maximizers.

estimated by solving Form. (2)—see Fig. 20. Thus,
there could be infinitely many global maximizers
(the shaded blue regions in Fig. 19), depending on
the shape of the decision boundary. As for the pat-
terns, solutions in the left shaded blue region in
Fig. 19 is denser in pattern than the upper ones.
For other general losses, such as cross-entropy or
margin loss, the set of global maximizers might be
smaller, but the patterns can also be more com-
plicated due to the typical complicated nonlinear
decision boundaries associated with DNN models.

6 Direct implications from the
patterns

Now that we have demonstrated the complex inter-
play of loss ℓ, distance metric d, and the numerical

Fig. 20: Histogram of the ℓ1 robustness radius
estimated by solving Form. (2) for 100 CIFAR-10
images. ε = 12 is typically used in Form. (1) as is
shown in dashed red line.

solver for the final solution patterns in Section 5,
we will discuss what it potentially implies to the
current practice of adversarial robustness research.

6.1 Robust evaluation by Form. (1)
is hardly sufficient

The most popular practice of RE is by solving
Form. (1) with a preset level of ε, using a fixed
set of attack algorithms and report the robust
accuracy [39, 68, 69]. As is shown in Section 5,
the optimal perturbations found by different algo-
rithms can have different sparsity patterns. We
have also shown in Table 2 that combining multiple
algorithms can lead to the lowest robust accuracy,
even if a single solver can beat all others indi-
vidually. These facts imply that in order to have
a reliable and accurate measure of the model’s
robustness via Form. (1), instead of relying on any
small set of "strong" attack algorithms, we should

Springer Nature 2021 LATEX template

19

include as many solvers as possible, which seems
costly and impractical.

6.2 Form. (2) may be the better
choice for RE

On the other hand, using Form. (2) for RE seems
more advantageous, especially if our goal is to
understand the limitations of our models instead of
the attacker-defender setup: the solutions (minimal
robustness radius) are automatically the smallest ε
for every sample (v.s. the preset, fixed ε in Form. (1)
for all samples). Such sample-wise radius ε not only
can provide statistically meaningful comparisons
among models, it can also help us identify hard
samples x from a dataset, which may in turn help
us better understand the training process, or pro-
vide clues to adjust the training scheme to improve
the model’s performance.

Table 5: Robust accuracy against various adver-
sarial attacks reported in Table 3 from [12].
PAT-AlexNet is an adversarially trained model
with the LPIPS distance. The ℓ2 and ℓ∞ attacks
during evaluation are generated by the AutoAttack
package, whose backbone is mainly APGD with
cross-entropy loss. [12] draws the conclusion that
PAT generalizes well to unforeseen perturbation
types, whereas we think that PAT performs only
similarly to a ℓ2 trained model and does not have
better generalization.

Test Attack (Robust Acc.)

Training Clean ℓ∞ ℓ2 PPGD LPA

ℓ∞ 81.7 55.7 3.7 1.5 0.0
ℓ2 75.3 46.1 41.0 22.0 0.5

PAT-AlexNet 75.7 46.8 41.0 31.1 1.6

7 Many other implications and
discussions

7.1 Form. (1) may be Incapable of
measuring robustness

The motivation to perform RE with Form. (1) is
usually associated with the attacker-defender
setup, where RE is viewed as a test bench for all
possible future attacks, and the network is
required ideally to be robust against all of them.

However, it is questionable whether the popular
‘robust accuracy’ is a good measure for such notion
of robustness. E.g., the reason why the current
attack budget ε used in practice is a reasonable
choice, e.g., ε = 0.03 for ℓ∞-attack in [39], needs
to be justified. We did not find rigorous answers
to this question in previous literatures and
suspect that the choices are purely empirical. E.g,
[39] states that their motivations to choose such ε

... the true label should stay the same for each in-
distribution input within the perturbation set ...

but other values can also meet this standard. More
importantly, having a higher robust accuracy at
at level ε1 does not imply a model being more
robust at other levels—E.g., see Figure 1 in [70],
where the most ‘robust’ model at each testing ε’s
are all different. The clean-robust accuracy trade-
off [71, 72]—where a non-adversarially trained
model has the best clean accuracy (at level ε = 0)
and the worst robust accuracy (at the commonly
used ε), while adversarially trained models have
better robust accuracy, but worse clean accuracy,
can be interpreted as such too. As a result, conclu-
sions as ‘the model is more robust due to higher
robust accuracy achieved’ using current adversarial
robustness benchmark is misleading.

7.2 Achieving adversarial robustness
via adversarial training may be
difficult

Despite the effort of looking for ways to achieve gen-
eralizable adversarial robustness, it is widely known
that robustness achieved by adversarial training
(Form. (3)) does not even generalize across simple
ℓp distance models [73, 74]. E.g., models trained
by Form. (3) with the ℓ∞ norm fail to achieve good
robust accuracy in RE with ℓ2 attack; the distance
ℓ1 seems to be a strong attack model for all other
distances such as ℓ2 and ℓ∞, and even on itself. Now
that [11] has observed the (approximate) global
maximizers to be distinct and spatially scattered,
the patterns we discussed in Section 5 provide a
plausible explanation for why it is expected not
to be generalizable—the model simply cannot gen-
eralize to a new distribution (patterns) which it
has not seen during training. [12] claims that using
the LPIPS distance (Eq. (16)) as d in Form. (1)
can approximate the universal set of adversarial
attacks, and perceptual adversarially trained (PAT)

Springer Nature 2021 LATEX template

20

APGD cross-entropy LPA PWCF PWCF

(a) ℓ1 (b) ℓ2 (c) ℓ∞ (d) LPIPS-ℓ2 (e) LPIPS-ℓ2 (f) LPIPS-ℓ1
Fig. 21: Histograms of the sparsity measure (∥x′ − x∥1/∥x′ − x∥2) on 500 ImageNet100 images, by
solving Form. (1) with different distance metrics d (ℓp and LPIPS) and different solvers (APGD with cross-
entropy loss, LPA and PWCF). LPA-LPIPS-ℓ2 is the perceptual attack used in [12]. The adversaries are
similar to APGD-ℓ2 and APGD-ℓ∞ in the sparsity patterns, which we think explains why PAT-AlexNet
have good robust accuracy w.r.t ℓ2 and ℓ∞ attacks in Table 5. Also, using the LPIPS distance as d in
Form. (1) will demonstrate different pattern preferences due to the solver and norm used (see the above
three figures related to LPIPS), which makes it less convincing that LPIPS can approximate a universal
adversarial model as is claimed in [12].

models (Form. (1) with LPIPS distance) can gener-
alize to other unseen attacks, supported by result
in Table 5. We disagree with their conclusion and
suspect that PAT models proposed in [12] only
performs similarly to the ℓ2 trained one:

1. If we test the ℓ2 and PAT-AlexNet models in
Table 5 by APGD-ℓ1 (ε = 1200) attack (on
ImageNet-100), both will achieve 0% robust
accuracy—PAT models not generalizing uni-
versally.

2. Performing the sparsity analysis as discussed
in Section 5, the patterns show that the adver-
saries generated by perceptual attack are close
to the APGD-CE-ℓ2 generated ones, see (a)-
(d) in Fig. 21. Note that the robust accuracy
achieved by PAT-Alexnet is also similar to
the ℓ2 model in Table 5.

3. Substituting the ℓ2 norm by ℓ1 in the LPIPS
definition Eq. (16):

d(x,x′)
.
= ∥ϕ(x)− ϕ(x′)∥1 (17)

the solution patterns will alter, see (e)-(f)
in Fig. 21. Furthermore, (d)-(e) in Fig. 21
also shows that different solvers (LPA and
PWCF) will also result into different patterns
even using LPIPS—LPIPS will likely suffer
in ways similar to ℓp norms in the robustness
formulations and is not ‘universal’.

8 Summary
In this paper, we introduce a new algorithmic
framework, PyGRANSO with-Constraint-Folding
(PWCF), to solve the robustness evaluation (RE)

problems in both max- form (Form. (1)) and min-
form (Form. (2)). Our PWCF can handle any piece-
wise differentiable distance metrics that are beyond
the reach of existing methods (such as ℓp where
p > 0, and perceptual distance such as LPIPS),
while achieving performance comparable to the
existing SOTA methods when the distance metric
d is ℓ1, ℓ2 or ℓ∞ norm. We observe that using dif-
ferent combinations of loss ℓ, distance metric d and
algorithm to solve Form. (1) and (2) will lead to
different sparsity patterns in solution. We then pro-
vide an explanation on why it happens and discuss
what this implies to adversarial robustness:

1. The current practice of RE based on solving
Form. (1) can be insufficient and misleading.

2. The pattern difference may reveal a crucial
limitation of the current adversarial training
(AT) pipeline (Form. (3))—models trained in
such pipeline may be intrinsically hard to
generalize.

[75] has criticized the practicality of studying ‘small
ℓp perturbations’ and urged researchers to be more
explicit about their specific motivations when pre-
senting results, we here re-iterate their thoughts
with the following questions as our reflections on
future researches:

1. Is the current adversarial robustness (attacker-
defender) a goal too ambitious to achieve in
practice? Do we need a more practical one?

2. What does the current RE pipeline (using
Form. (1)) really tell us? Should we standard-
ize the RE using the min- form Form. (2)
instead?

Springer Nature 2021 LATEX template

21

3. What can AT (Form. (3)) actually achieve
in practice? Are we expecting more than its
capability?

As a result, the tool (PWCF) we presented in this
paper is neither intended to compare the attack
performance with the existing SOTA ℓp algorithms,
nor to improve the adversarial training pipeline.
The goal of PWCF is to provide a numerical
framework that is practical, general and reliable
to test Form. (1) and (2) which can be helpful to
understand our networks and robustness.

Acknowledgments. Acknowledgments are not
compulsory. Where included they should be brief.
Grant or contribution numbers may be acknowl-
edged.

Please refer to Journal-level guidance for any
specific requirements.

Appendix A

Projection onto the intersection of norm
ball and box constraints APGD for solv-
ing Form. (1) with ℓp distances entails solving
Euclidean projection subproblems of the form:

min
x′∈Rn

∥z − x′∥22

s. t. ∥x− x′∥p ≤ ε, x′ ∈ [0, 1]n
(A1)

where z = x+w is a one-step update of x towards
direction w. After a simple reparametrization, we
have

min
δ∈Rn

∥w − δ∥22

s. t. ∥δ∥p ≤ ε, x+ δ ∈ [0, 1]n
(A2)

We focus on p = 1, 2,∞ which are popular in
the AR literature. In early works, a “lazy” projec-
tion scheme—sequentially projecting onto the ℓp
ball and then to the [0, 1]n box, is used. [76] has
recently identified the detrimental effect of lazy
projection on the performance for p = 1, and has
derived a closed form solution. Here, we prove the
correctness of the sequential projection for p = ∞
(Lemma A.1), and discuss problems about the
p = 2 case (Lemma A.3).

For p = ∞, obviously we only need to consider
the individual coordinates.

Lemma A.1. Assume x ∈ [0, 1]. The unique
Solution for

min
δ∈R

(w − δ)
2

s. t. |δ| ≤ ε, x+ δ ∈ [0, 1]
(A3)

is

P∞,box =

Springer Nature 2021 LATEX template

22
w, w ∈ [max(−x,−ε),min(1− x, ε)]

max(−x,−ε), w ≤ max(−x,−ε)

min(1− x, ε), w ≥ min(1− x, ε)

(A4)

which agrees with the sequential projectors P∞Pbox

and PboxP∞.

One can derive the one-step projection for-
mula Eq. (A4) easily once recognizing the two box
constraints can be combined into one:

max(−ε,−x) ≤ δ ≤ min(ε, 1− x) (A5)

To show the equivalence to P∞Pbox and PboxP∞,
we could write all projectors analytically and
directly verify the claimed equivalence. But that
tends to be cumbersome. Here, we invoke an
elegant result due to [77]. For this, we need to
quickly set up the notations. For any function
f : Rn → R ∪ {+∞}, its proximal mapping
Proxf (y) is defined as

Proxf (y)
.
= argmin

z∈Rn

1

2
∥y − z∥22 + f(z) (A6)

When f is the indicator function ıC for a set C
defined as

ıC(z) =

{
0 z ∈ C

∞ otherwise
(A7)

Proxf (y) is the Euclidean projector PC(y). For
two closed proper convex functions f and g, [77]
studies when Proxf+g = Proxf ◦Proxg. If f and g
are two set indicator functions, this exactly asks
when the sequential projector is equivalent to the
true projector.

Theorem A.2 (adapted from Theorem 2 of
[77]). If f = ıC for a closed convex set C ⊂ R,
Proxf ◦ Proxg = Proxf+g for all closed proper
convex functions g : R → R ∪ {±∞}.

The equivalence of projectors we claim in
Lemma A.1 follows by setting f = ı∞ and g = ıbox,
and vise versa.

For p = 2, the sequential projectors are
not equivalent to the true projector in general,
although empirically we observe that P2Pbox is
a much better approximation than PboxP2. The

former is used in the APGD algorithm of current
AutoAttack.

Lemma A.3. Assume x ∈ [0, 1]n. When p =
2, the projector for Form. (A2) P2,box does not
agree with the sequential projectors P2Pbox and
PboxP2 in general. However, both P2Pbox and
PboxP2 always find feasible points for the projection
problem.

Fig. A1: Illustration of the problem with the
sequential projectors when p = 2. In general, nei-
ther of the sequential projectors produces the right
projection.

Proof For the nonequivalence, we present a couple
of counter-examples in Fig. A1. Note that the point
z is inside the normal cone of the bottom right cor-
ner point of the intersection:

{
δ ∈ R2 : ∥δ∥2 ≤ ε

}
∩{

δ ∈ R2 : x+ δ ∈ [0, 1]2
}

.
For the feasibility claim, note that for any y ∈ Rn

P2 (y) =

{
ε y
∥y∥2

∥y∥2 ≥ ε

y otherwise
(A8)

and for any y ∈ R,

Pbox (y) =

1− x y ≥ 1− x

y −x < y < 1− x

−x y ≤ −x

(A9)

and Pbox(y) acts on any y ∈ Rn elementwise. For any
y inside the ℓ2 ball,

∥Pbox (y)∥2 = ∥Pbox (y)− Pbox (0)∥2
≤ ∥y − 0∥2 = ∥y∥2 ≤ ε (A10)

Springer Nature 2021 LATEX template

23

due to the contraction property of projecting onto
convex sets. Therefore, PboxP2(y) is feasible for any
y ∈ Rn. Now for any y inside the box:

• if ∥y∥2 < ε, P2(y) = y and so P2(y) remains in
the box;

• if ∥y∥2 ≥ ε, P2(y) = ε y
∥y∥2

. Since ε/∥y∥2 ∈ [0, 1],
P2(y) shrinks each component of y but keeps
their original signs. Thus P2(y) remains in the
box if y is in the box.

We conclude that P2Pbox(y) is feasible for any y, com-
pleting the proof. □

Appendix B

Sketch of the BFGS-SQP algorithm in
GRANSO GRANSO is among the first opti-
mization solvers targeting general nonsmooth,
nonconvex problems with nonsmooth constraints
[41].

The key algorithm of GRANSO package is
a sequential quadratic programming (SQP) that
employs a quasi-Newton algorithm, Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [46], and an
exactly penalty function (Penalty-SQP).

The Penalty-SQP calculates the alternative
search direction from the following quadratic
programming (QP) problem :

min
d∈Rn,s∈Rp

µ (f (xk) +∇f (xk)
⊺
d)

+e⊺s+
1

2
d⊺Hkd

s. t. c (xk)+∇c (xk)
⊺
d ≤ s, s ≥ 0

(B11)

Here we abuse the notation c(·) to be the total
constraints for simplicity (i.e., representing all c’s
and h’s in Eq. (8)). The dual of problem (Eq. (B11))
is used in GRANSO package:

max
λ∈Rp

µf(xk) + c(xk)
⊺λ

− 1

2
(µ∇f(xk) +∇c(xk)λ)

⊺
H−1

k

· (µ∇f(xk) +∇c(xk)λ)

s. t. 0 ≤ λ ≤ e

(B12)

which has only simple box constraints that can be
easily handled by many popular QP solvers such
as OSQP (ADMM-based algorithm) [78]. Then the

primal solution d can be recovered from the dual
solution λ by solving Form. (B12):

d = −H−1
k (µ∇f(xk) +∇c(xk)λ) (B13)

The search direction calculated at each step con-
trols the trade-off between minimizing the objective
and moving towards the feasible region. To mea-
sure the how much violence the current searching
direction will give, a linear model of constraint
violation is used:

l(d; xk) := ∥max {c(xk) +∇c(xk)
⊺d,0}∥1

(B14)

To dynamically set the penalty parameter, a
steering strategy as Algorithm 3 is used:

Algorithm 3
[dk, µnew] = sqp_steering(xk,Hk, µ)

Require: xk,Hk, µ at current iteration
Require: constants cv ∈ (0, 1), cµ(0, 1)

1: Calculate dk from Eq. (B13) and Form. (B12)
with µnew = µ

2: if lδ(dk; xk) < cvv(xk) then
3: Calculate d̃k from Eq. (B13) and

Form. (B12) with µ = 0
4: while lδ(dk; xk) < cvlδ(d̃k; xk) do
5: µnew := cµµnew
6: Calculate dk from Eq. (B13) and

Form. (B12) with µ = µnew
7: end while
8: end if
9: return dk, µnew

For non-smooth problems, it is usually hard to
find a reliable stopping criterion as the norm of the
gradient will not decrease when approaching the
minimizer. GRANSO uses an alternative stopping
strategy, which is based on the idea of gradient
sampling [79] [55].

Define the neighboring gradient information
(from the l most recent iterates) as:

G :=
[
∇f(xxk+1−l

) . . .∇f(xk)
]
,

Ji :=
[
∇ci(xxk+1−l

) . . .∇ci(xk)
]
,

i ∈ {1, . . . , p}
(B15)

Springer Nature 2021 LATEX template

24

Augment Form. (B11) and its dual Form. (B12)
in the steering strategy, we can obtain the aug-
mented dual problem:

max
σ∈Rl,λ∈Rpl

p∑
i=1

ci(xk)e
⊺λi

−1

2

[
σ
λ

]⊺ [
G,J1, . . . ,Jp

]⊺
H−1

k

[
G,J1, . . . ,Jp

] [σ
λ

]
s. t.0 ≤ λi ≤ e, e⊺σ = µ, σ ≥ 0

(B16)

By solving Eq. (B16), we can obtain d⋄:

d⋄ = H−1
k

[
G,J1, . . . ,Jp

] [σ
λ

]
(B17)

If the norm of d⋄ is sufficiently small, the cur-
rent iteration can be viewed as near a small
neighborhood of a stationary point.

Algorithm 4
[x∗, f∗,v∗] = bfgs_sqp (f(·), c(·),x0, µ0))

Require: f, c,x0, µ0

Require: constants τ⋄, τv
1: H0 := I, µ := µ0

2: ϕ(·) = µf(·) + v(·)
3: ∇ϕ(·) = µ∇f(·) +

∑
i∈P ∇ci(·)

4: v(·) = ∥max {c(·), 0}∥1
5: ϕ0 := ϕ(x0; µ),∇ϕ0 := ∇ϕ(x0; µ), v0 :=

v(x0)
6: for k = 0, 1, 2, . . . do
7: [dk, µ̂] := sqp_steering(xk,Hk,µ)
8: if µ̂ < µ then
9: µ := µ̂

10: ϕk := ϕ(xk; µ),∇ϕk :=
∇ϕ(xk; µ), vk := v(xk)

11: end if
12: [xk+1, ϕk+1,∇ϕk+1, vk+1] :=

Armijo_Wolfe (xk, ϕk,∇ϕk, ϕ(·),∇ϕ(·))
13: Get d⋄ from Eq. (B17) and Form. (B16)
14: if ∥d⋄∥2 < τ⋄ and vk+1 < τv then
15: break
16: end if
17: BFGS update Hk+1

18: end for
19: return x∗, f∗,v∗

Appendix C

Danskin’s theorem and min-max optimiza-
tion In this section, we discuss the importance of
computing a good solution to the inner maximiza-
tion problem when applying first-order methods
for AT, i.e., solving Form. (3).

Consider the minimax problem

min
θ

g(θ)
.
=

[
max
x′∈∆

h(θ,x′)

]
, (C18)

where we assume the function h is locally Lipschitz
continuous. To apply first-order methods to solve
Eq. (C18), one needs to evaluate a (sub)gradient of
g at any given θ. If h(θ,x′) is smooth in θ, one can
invoke Danskin’s theorem for such an evaluation
(see, for example, [11, Appendix A]). However, in
DL applications with nonsmooth activations or
losses, h(θ, δ) is not differentiable in θ, and hence
a general version of Danskin’s theorem is needed.

To proceed, we first introduce a few basic con-
cepts in nonsmooth analysis; general background
can be found in [52–54]. For a locally Lipschitz
continuous function φ : Rn → R, define its Clarke
directional derivative at z̄ ∈ Rn in any direction
d ∈ Rn as

φ◦(z̄; d)
.
= lim sup

t↓0,z→z̄

φ(z + td)− φ(z)

t

We say φ is Clarke regular at z̄ if φ◦(z̄; d) =
φ′(z̄; d) for any d ∈ Rn, where φ′(z̄; d)

.
=

lim
t↓0

1

t
(φ(z̄ + td)− φ(z̄)) is the usual one-sided

directional derivative. The Clarke subdifferential
of φ at z̄ is defined as

∂φ(z̄)
.
= {v ∈ Rn : φ◦(z̄; d) ≥ v⊺d}

The following result has its source in [80, Theorem
2.1]; see also [54, Section 5.5].

Theorem C.1. Assume that ∆ in Eq. (C18) is a
compact set, and the function h satisfies

1. h is jointly upper semicontinuous in (θ,x′);
2. h is locally Lipschitz continuous in θ, and the

Lipschitz constant is uniform in x′ ∈ ∆;
3. h is directionally differentiable in θ for all

x′ ∈ ∆;

Springer Nature 2021 LATEX template

25

If h is Clarke regular in θ for all θ, and ∂θh is
upper semicontinuous in (θ,x′), we have that for
any θ̄

∂g(θ̄) = conv{∂h(θ̄,x′) : x′ ∈ ∆∗(θ̄)} (C19)

where conv(·) denotes the convex hull of a set, and
∆∗(θ̄) is the set of all optimal solutions of the inner
maximization problem at θ̄.

The above theorem indicates that in order to
get an element from the subdifferential set ∂g(θ̄),
we need to get at least one optimal solution
x′ ∈ ∆∗(θ̄). A suboptimal solution to the inner
maximization problem may result in a useless direc-
tion for the algorithm to proceed. To illustrate this,
let us consider a simple one-dimensional example

min
θ

g(θ) :=

[
max

−1≤x′≤1
max(θx′, 0)2

]
which corresponds to a one-layer neural network
with one data point (0, 0), the ReLU activa-
tion function and squared loss. Starting at θ0 =
1, we get the first inner maximization problem
max−1≤x′≤1 max(x′, 0)2. Although its global opti-
mal solution is x′

∗ = 1, the point x′ = 0 is a
stationary point satisfying the first-order optimal-
ity condition. If the latter point is mistakenly
adopted to compute an element in ∂g(θ0), it would
result in a zero direction so that the overall gradient
descent algorithm cannot proceed.

References
[1] C. Szegedy, W. Zaremba, I. Sutskever,

J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[2] I. Goodfellow, J. Shlens, and C. Szegedy,
“Explaining and harnessing adversarial exam-
ples,” in International Conference on Learning
Representations, 2015. [Online]. Available:
http://arxiv.org/abs/1412.6572

[3] D. Hendrycks and T. Dietterich, “Benchmark-
ing neural network robustness to common
corruptions and perturbations,” in Interna-
tional Conference on Learning Representa-
tions, 2018.

[4] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt,
and A. Madry, “Exploring the landscape of
spatial robustness,” in Proceedings of the
36th International Conference on Machine
Learning, ser. Proceedings of Machine
Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR,
09–15 Jun 2019, pp. 1802–1811. [Online].
Available: https://proceedings.mlr.press/v97/
engstrom19a.html

[5] C. Xiao, J. Zhu, B. Li, W. He, M. Liu, and
D. Song, “Spatially transformed adversarial
examples,” in International Conference on
Learning Representations, 2018.

[6] E. Wong, F. R. Schmidt, and J. Z. Kolter,
“Wasserstein adversarial examples via pro-
jected sinkhorn iterations,” arXiv:1902.07906,
Feb. 2019.

[7] C. Laidlaw and S. Feizi, “Functional adversar-
ial attacks,” Advances in neural information
processing systems, vol. 32, 2019.

[8] H. Hosseini and R. Poovendran, “Seman-
tic adversarial examples,” in Proceedings of
the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018, pp.
1614–1619.

[9] A. Bhattad, M. J. Chong, K. Liang, B. Li,
and D. A. Forsyth, “Big but imperceptible

http://arxiv.org/abs/1412.6572
https://proceedings.mlr.press/v97/engstrom19a.html
https://proceedings.mlr.press/v97/engstrom19a.html

Springer Nature 2021 LATEX template

26

adversarial perturbations via semantic manip-
ulation,” arXiv preprint arXiv:1904.06347,
vol. 1, no. 3, 2019.

[10] R. Huang, B. Xu, D. Schuurmans, and
C. Szepesvari, “Learning with a strong adver-
sary,” arXiv:1511.03034, Nov. 2015.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras,
and A. Vladu, “Towards deep learning mod-
els resistant to adversarial attacks,” arXiv
preprint arXiv:1706.06083, 2017.

[12] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual
adversarial robustness: Defense against unseen
threat models,” in ICLR, 2021.

[13] Y. Zhang, G. Zhang, P. Khanduri, M. Hong,
S. Chang, and S. Liu, “Revisiting and advanc-
ing fast adversarial training through the lens
of bi-level optimization,” arXiv:2112.12376,
Dec. 2021.

[14] F. Croce and M. Hein, “Minimally distorted
adversarial examples with a fast adaptive
boundary attack,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp.
2196–2205.

[15] ——, “Reliable evaluation of adversarial
robustness with an ensemble of diverse
parameter-free attacks,” in International con-
ference on machine learning. PMLR, 2020,
pp. 2206–2216.

[16] M. Pintor, F. Roli, W. Brendel, and B. Big-
gio, “Fast minimum-norm adversarial attacks
through adaptive norm constraints,” Advances
in Neural Information Processing Systems,
vol. 34, 2021.

[17] G. Singh, T. Gehr, M. Mirman, M. Püschel,
and M. Vechev, “Fast and effective robustness
certification,” Advances in neural information
processing systems, vol. 31, 2018.

[18] G. Singh, T. Gehr, M. Püschel, and M. Vechev,
“Boosting robustness certification of neural
networks,” in International conference on
learning representations, 2018.

[19] ——, “An abstract domain for certifying neu-
ral networks,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL,
pp. 1–30, 2019.

[20] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh,
and P. Zhang, “A convex relaxation bar-
rier to tight robustness verification of neural
networks,” arXiv:1902.08722, Feb. 2019.

[21] S. Dathathri, K. Dvijotham, A. Kurakin,
A. Raghunathan, J. Uesato, R. R. Bunel,
S. Shankar, J. Steinhardt, I. Goodfellow,
P. S. Liang et al., “Enabling certification of
verification-agnostic networks via memory-
efficient semidefinite programming,” Advances
in Neural Information Processing Systems,
vol. 33, pp. 5318–5331, 2020.

[22] M. N. Müller, G. Makarchuk, G. Singh,
M. Püschel, and M. Vechev, “PRIMA: general
and precise neural network certification via
scalable convex hull approximations,” Proceed-
ings of the ACM on Programming Languages,
vol. 6, no. POPL, pp. 1–33, jan 2022.

[23] E. Wong and J. Z. Kolter, “Provable
defenses against adversarial examples via
the convex outer adversarial polytope,”
arXiv:1711.00851, Nov. 2017.

[24] A. Raghunathan, J. Steinhardt, and P. Liang,
“Certified defenses against adversarial exam-
ples,” arXiv:1801.09344, Jan. 2018.

[25] E. Wong, F. Schmidt, J. H. Metzen, and J. Z.
Kolter, “Scaling provable adversarial defenses,”
Advances in Neural Information Processing
Systems, vol. 31, 2018.

[26] K. Dvijotham, S. Gowal, R. Stanforth,
R. Arandjelovic, B. O’Donoghue, J. Uesato,
and P. Kohli, “Training verified learners
with learned verifiers,” arXiv:1805.10265, May
2018.

[27] S. Lee, W. Lee, J. Park, and J. Lee, “Towards
better understanding of training certifiably
robust models against adversarial examples,”
Advances in Neural Information Processing
Systems, vol. 34, 2021.

Springer Nature 2021 LATEX template

27

[28] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluat-
ing robustness of neural networks with mixed
integer programming,” arXiv:1711.07356, Nov.
2017.

[29] G. Katz, C. Barrett, D. Dill, K. Julian, and
M. Kochenderfer, “Reluplex: An efficient smt
solver for verifying deep neural networks,”
arXiv:1702.01135, Feb. 2017.

[30] R. Bunel, P. Mudigonda, I. Turkaslan, P. Torr,
J. Lu, and P. Kohli, “Branch and bound for
piecewise linear neural network verification,”
Journal of Machine Learning Research, vol. 21,
no. 2020, 2020.

[31] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J.
Hsieh, L. Daniel, D. Boning, and I. Dhillon,
“Towards fast computation of certified robust-
ness for relu networks,” in International Con-
ference on Machine Learning. PMLR, 2018,
pp. 5276–5285.

[32] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J.
Hsieh, and L. Daniel, “Efficient neural net-
work robustness certification with general
activation functions,” Advances in neural
information processing systems, vol. 31, 2018.

[33] T. Weng, H. Zhang, P. Chen, J. Yi, D. Su,
Y. Gao, C. Hsieh, and L. Daniel, “Eval-
uating the robustness of neural networks:
An extreme value theory approach,” arXiv
preprint arXiv:1801.10578, 2018.

[34] Z. Lyu, C. Ko, Z. Kong, N. Wong, D. Lin,
and L. Daniel, “Fastened crown: Tightened
neural network robustness certificates,” in
Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 34, no. 04, 2020, pp.
5037–5044.

[35] S. M. Moosavi-Dezfooli, A. Fawzi, and
P. Frossard, “Deepfool: a simple and accu-
rate method to fool deep neural networks,”
arXiv:1511.04599., Nov. 2015.

[36] M. Hein and M. Andriushchenko, “For-
mal guarantees on the robustness of a
classifier against adversarial manipulation,”
arXiv:1705.08475, May 2017.

[37] N. Carlini and D. Wagner, “Towards eval-
uating the robustness of neural networks,”
arXiv:1608.04644, Aug. 2016.

[38] J. Rony, L. G. Hafemann, L. S. Oliveira,
I. B. Ayed, R. Sabourin, and E. Granger,
“Decoupling direction and norm for efficient
gradient-based l2 adversarial attacks and
defenses,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 2019, pp. 4322–4330.

[39] F. Croce, M. Andriushchenko, V. Sehwag,
E. Debenedetti, N. Flammarion, M. Chiang,
P. Mittal, and M. Hein, “Robustbench: a
standardized adversarial robustness bench-
mark,” in Thirty-fifth Conference on Neural
Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

[40] T. Bai, J. Luo, J. Zhao, B. Wen, and
Q. Wang, “Recent advances in adversarial
training for adversarial robustness,” arXiv
preprint arXiv:2102.01356, 2021.

[41] F. E. Curtis, T. Mitchell, and M. L. Overton,
“A bfgs-sqp method for nonsmooth, nonconvex,
constrained optimization and its evaluation
using relative minimization profiles,” Opti-
mization Methods and Software, vol. 32, no. 1,
pp. 148–181, 2017.

[42] B. Liang, T. Mitchell, and J. Sun, “NCVX:
A general-purpose optimization solver for
constrained machine and deep learning,” 2022.

[43] M. Mosbach, M. Andriushchenko, T. Trost,
M. Hein, and D. Klakow, “Logit pairing meth-
ods can fool gradient-based attacks,” arXiv
preprint arXiv:1810.12042, 2018.

[44] N. Carlini, A. Athalye, N. Papernot, W. Bren-
del, J. Rauber, D. Tsipras, I. Goodfellow,
A. Madry, and A. Kurakin, “On evaluat-
ing adversarial robustness,” arXiv:1902.06705,
Feb. 2019.

[45] M. Andriushchenko, F. Croce, N. Flammarion,
and M. Hein, “Square attack: a query-efficient
black-box adversarial attack via random
search,” in European Conference on Computer
Vision. Springer, 2020, pp. 484–501.

Springer Nature 2021 LATEX template

28

[46] S. Wright, J. Nocedal et al., “Numerical opti-
mization,” Springer Science, vol. 35, no. 67-68,
p. 7, 1999.

[47] D. Bertsekas, Nonlinear Programming 3rd
Edition. Athena Scientific, 2016.

[48] G. Pillo and M. Roma, Large-scale nonlinear
optimization. Springer Science & Business
Media, 2006, vol. 83.

[49] A. Wächter and L. T. Biegler, “On the imple-
mentation of an interior-point filter line-search
algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106,
no. 1, pp. 25–57, 2006.

[50] S. Laue, M. Mitterreiter, and J. Giesen, “Geno–
generic optimization for classical machine
learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[51] S. Laue, M. Blacher, and J. Giesen, “Optimiza-
tion for classical machine learning problems
on the gpu,” arXiv:2203.16340, Mar. 2022.

[52] F. H. Clarke, Optimization and nonsmooth
analysis. SIAM, 1990.

[53] A. Bagirov, N. Karmitsa, and M. M. Mäkelä,
Introduction to Nonsmooth Optimization.
Springer International Publishing, 2014.

[54] Y. Cui and J. S. Pang, Modern Noncon-
vex Nondifferentiable Optimization. Society
for Industrial and Applied Mathematics, Jan
2021.

[55] J. V. Burke, F. E. Curtis, A. S. Lewis,
M. L. Overton, and L. E. Simões, “Gradient
sampling methods for nonsmooth optimiza-
tion,” Numerical Nonsmooth Optimization, pp.
201–225, 2020.

[56] J. M. Danskin, The Theory of Max-Min
and its Application to Weapons Allocation
Problems. Springer Berlin Heidelberg, 1967.

[57] P. Bernhard and A. Rapaport, “On a theorem
of danskin with an application to a theorem
of von neumann-sion,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 24, no. 8,

pp. 1163–1181, apr 1995.

[58] M. Razaviyayn, T. Huang, S. Lu, M. Nouiehed,
M. Sanjabi, and M. Hong, “Non-convex min-
max optimization: Applications, challenges,
and recent theoretical advances,” IEEE Signal
Processing Magazine (Volume: 37, Issue: 5,
Sept. 2020), Jun. 2020.

[59] J. Martins and N. M. Poon, “On structural
optimization using constraint aggregation,” in
VI World Congress on Structural and Multi-
disciplinary Optimization WCSMO6, Rio de
Janeiro, Brasil. Citeseer, 2005.

[60] K. Zhang, Z. Han, Z. Gao, and Y. Wang, “Con-
straint aggregation for large number of con-
straints in wing surrogate-based optimization,”
Structural and Multidisciplinary Optimization,
vol. 59, no. 2, pp. 421–438, sep 2018.

[61] F. Domes and A. Neumaier, “Constraint
aggregation for rigorous global optimization,”
Mathematical Programming, vol. 155, no. 1-2,
pp. 375–401, dec 2014.

[62] Y. M. Ermoliev, A. V. Kryazhimskii, and
A. Ruszczyński, “Constraint aggregation prin-
ciple in convex optimization,” Mathematical
Programming, vol. 76, no. 3, pp. 353–372, mar
1997.

[63] A. C. Trapp and O. A. Prokopyev, “A note on
constraint aggregation and value functions for
two-stage stochastic integer programs,” Dis-
crete Optimization, vol. 15, pp. 37–45, feb
2015.

[64] R. Zhang, P. Isola, A. A. Efros, E. Shechtman,
and O. Wang, “The unreasonable effective-
ness of deep features as a perceptual metric,”
in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), June 2018.

[65] C. Studer, W. Yin, and R. G. Baraniuk,
“Signal representations with minimum ℓ∞,”
in 2012 50th Annual Allerton Conference
on Communication, Control, and Computing
(Allerton). IEEE, oct 2012.

Springer Nature 2021 LATEX template

29

[66] T. Hastie, R. Tibshirani, and M. Wainwright,
Statistical Learning with Sparsity. Chapman
and Hall/CRC, may 2015.

[67] J. Wright and Y. Ma, High-Dimensional
Data Analysis with Low-Dimensional Mod-
els Principles, Computation, and Applications.
University of Cambridge ESOL Examinations,
2021.

[68] N. Papernot, F. Faghri, N. Carlini, I. Good-
fellow, R. Feinman, A. Kurakin, C. Xie,
Y. Sharma, T. Brown, A. Roy et al.,
“Technical report on the cleverhans v2. 1.0
adversarial examples library,” arXiv preprint
arXiv:1610.00768, 2016.

[69] J. Rauber, W. Brendel, and M. Bethge, “Fool-
box: A python toolbox to benchmark the
robustness of machine learning models,” arXiv
preprint arXiv:1707.04131, 2017.

[70] K. Sridhar, S. Dutta, R. Kaur, J. Weimer,
O. Sokolsky, and I. Lee, “Towards alternative
techniques for improving adversarial robust-
ness: Analysis of adversarial training at a
spectrum of perturbations,” arXiv preprint
arXiv:2206.06496, 2022.

[71] A. Raghunathan*, S. M. Xie*, F. Yang,
J. Duchi, and P. Liang, “Adversarial training
can hurt generalization,” in ICML 2019
Workshop on Identifying and Understanding
Deep Learning Phenomena, 2019. [Online].
Available: https://openreview.net/forum?id=
SyxM3J256E

[72] Y.-Y. Yang, C. Rashtchian, H. Zhang, R. R.
Salakhutdinov, and K. Chaudhuri, “A closer
look at accuracy vs. robustness,” Advances
in Neural Information Processing Systems,
vol. 33, pp. 8588–8601, 2020.

[73] P. Maini, E. Wong, and Z. Kolter, “Adversar-
ial robustness against the union of multiple
perturbation models,” in International Con-
ference on Machine Learning. PMLR, 2020,
pp. 6640–6650.

[74] F. Croce and M. Hein, “Provable robustness
against all adversarial ℓp-perturbations for
p ≥ 1,” arXiv preprint arXiv:1905.11213,

2019.

[75] J. Gilmer, R. P. Adams, I. Goodfellow,
D. Andersen, and G. E. Dahl, “Motivating
the rules of the game for adversarial example
research,” arXiv preprint arXiv:1807.06732,
2018.

[76] F. Croce and M. Hein, “Mind the box: ℓ1-
apgd for sparse adversarial attacks on image
classifiers,” in International Conference on
Machine Learning. PMLR, 2021, pp. 2201–
2211.

[77] Y.-L. Yu, “On decomposing the proximal map,”
Advances in neural information processing
systems, vol. 26, 2013.

[78] B. Stellato, G. Banjac, P. Goulart, A. Bem-
porad, and S. Boyd, “OSQP: an operator
splitting solver for quadratic programs,” Math-
ematical Programming Computation, vol. 12,
no. 4, pp. 637–672, 2020. [Online]. Available:
https://doi.org/10.1007/s12532-020-00179-2

[79] A. S. Lewis and M. L. Overton, “Nons-
mooth optimization via quasi-newton meth-
ods,” Mathematical Programming, vol. 141,
no. 1, pp. 135–163, 2013.

[80] F. H. Clarke, “Generalized gradients and
applications,” Transactions of the American
Mathematical Society, vol. 205, pp. 247–262,
1975.

https://openreview.net/forum?id=SyxM3J256E
https://openreview.net/forum?id=SyxM3J256E
https://doi.org/10.1007/s12532-020-00179-2

	Introduction
	Technical background
	Numerical maximization of Form.(1)
	Numerical minimization of Form.(2)
	PyGRANSO for constrained optimization
	Min-max optimization for practical adversarial training

	A generic solver for Form.(1) and (2): PyGRANSO With Constraint-Folding (PWCF)
	General techniques
	Reduce the number of constraints: constraint-folding
	Two stage optimization

	Techniques specific to Form.(1) and (2)
	Avoid sparse subgradients: reformulating constraints
	Decouple the update direction and the radius: reformulating 1 and objectives
	Numerical re-scaling to balance objective and constraints
	Loss clipping in solving Form.(1) with PWCF to generate attack

	Summary of PWCF to solve Form.(1) and Form.(2)
	Reliability
	Running cost

	Performance of PWCF on RE problems
	Compare PWCF with existing 1, 2 and solutions
	PWCF offers competitive and complementary performance in solving Form.(1)
	PWCF provides competitive solutions to Form.(2)

	PWCF can solve Form.(1) and (2) with other general distance metric d
	Solving Form.(2) with general d
	Solving Form.(1) with 1.5 and 8 norms
	Solving Form.(1) with perceptual metric

	Different combinations of , d, and the solvers prefer different patterns
	Direct implications from the patterns
	Robust evaluation by Form.(1) is hardly sufficient
	Form.(2) may be the better choice for RE

	Many other implications and discussions
	Form.(1) may be Incapable of measuring robustness
	Achieving adversarial robustness via adversarial training may be difficult

	Summary
	Acknowledgments

	
	
	

